ooo22
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
83、大肠杆菌增强现实应用的研究与实践
本研究探讨了增强现实(AR)技术在生物学教育中的应用,特别是针对大肠杆菌的学习。通过需求分析、数据收集、系统设计、应用构建与测试等阶段,成功开发了一款基于安卓平台的AR应用。应用包含2D标记、本地数据库和3D模型等关键要素,能够提升学生的学习兴趣和理解能力。研究总结了应用的优势与不足,并提出了未来发展和推广建议,为AR技术在教育领域的进一步应用提供了参考。原创 2025-07-23 10:35:11 · 13 阅读 · 0 评论 -
82、网页应用评估与大肠杆菌AR学习工具的综合解析
本文综述了基于WAIX模型的网页应用评估标准,重点分析了面向视障用户的交互特征、用户体验及最终判断结果的评估指标体系。同时,介绍了增强现实(AR)技术在教育领域的应用,特别是以大肠杆菌为主题的AR学习工具的设计与实现方法。文章旨在为网页可访问性评估和创新教育技术的发展提供理论支持与实践参考。原创 2025-07-22 13:54:14 · 13 阅读 · 0 评论 -
81、室内光环境与人类疲劳及网页可用性评估研究
该博文探讨了室内光环境对人类疲劳的影响以及网页可用性的评估方法。通过实验研究发现,随着光照强度增加,参与者的视觉疲劳程度提高,表现为瞳孔直径减小、注视和扫视活动减少,同时EEG数据也显示疲劳相关的脑波变化。此外,研究还聚焦于网页可用性评估,提出了WAIX模型,结合交互特征和用户体验组件,为视障用户设计更友好的网页界面提供指导。研究对未来个性化照明系统和网页评估工具的发展提出了展望。原创 2025-07-21 15:14:51 · 13 阅读 · 0 评论 -
80、个性化电子学习分析仪表盘与室内光环境对人体疲劳影响研究
本文探讨了两项研究成果:个性化电子学习分析仪表盘(DashLearn)和室内光环境对人体疲劳的影响。DashLearn利用线性回归模型帮助学生监控学习表现,并通过直观的界面展示课程成绩、出勤和作业信息,为学习提供智能化支持。另一方面,室内光环境研究揭示了照度与人体疲劳之间的关系,发现高照度环境可能导致更高的疲劳程度,为优化室内照明设计提供了依据。这两项研究分别从技术和环境角度出发,旨在提升学习和工作效率。原创 2025-07-20 15:11:20 · 10 阅读 · 0 评论 -
79、脑波与生物反馈疗法及个性化电子学习分析
本博文探讨了脑波与生物反馈疗法在广泛性焦虑症(GAD)治疗中的应用,以及个性化电子学习分析系统 DashLearn 的设计与优势。研究结果显示,药物治疗在短期内具有较高的有效性,而生物反馈疗法则通过训练患者控制脑波,提供了一种无药物副作用的替代方案。DashLearn 系统通过实时监控学习进度、与同龄人对比和成绩预测功能,弥补了当前电子学习系统在个性化学习方面的不足。未来的研究方向包括优化生物反馈治疗范式和拓展 DashLearn 的功能与应用范围,甚至探索两者结合的可能性,以促进身心健康与高效学习。原创 2025-07-19 16:16:47 · 9 阅读 · 0 评论 -
78、广泛性焦虑症中的脑电波与生物反馈疗法分析
本文探讨了广泛性焦虑症(GAD)的诊断与治疗方法,重点分析了脑电波(EEG)在诊断中的作用以及生物反馈疗法作为治疗手段的潜力。研究通过30名GAD患者的临床数据,对比了药物治疗与生物反馈疗法的效果。结果显示,药物治疗在维持患者正常状态方面表现更优,而生物反馈疗法在训练期间对减轻症状具有一定积极作用,且具备非侵入性和个性化治疗的优势。同时,文章也总结了生物反馈疗法面临的挑战,并展望了其在辅助治疗、预防干预和康复治疗中的应用前景。原创 2025-07-18 15:10:47 · 9 阅读 · 0 评论 -
77、利用电子鼻和机器学习对剩菜气味进行分类以检测污染
本研究利用电子鼻和机器学习技术,对马来西亚当地常见的剩菜污染程度进行分类,旨在通过检测食物气味判断其是否变质,以减少食物浪费。研究使用了支持向量机(SVM)、k-最近邻(k-NN)、随机森林(RF)和线性判别分析(LDA)等机器学习算法,并采用多种数据平衡技术,如过采样、欠采样、ROSE和SMOTE。实验结果表明,在未平衡数据集中,SVM表现最佳,而使用SMOTE技术时,RF的分类准确率最高。研究为剩菜污染检测提供了一种创新方法,但仍需进一步探索多分类方法和更复杂的算法优化。原创 2025-07-17 12:12:00 · 9 阅读 · 0 评论 -
76、不同环境对学习与食物品质的影响研究
本文探讨了不同光照环境对学生学习注意力的影响,以及如何利用机器学习对剩菜气味进行分类以评估其污染程度。研究发现,570 lx - 6500 K的光照环境最有利于提升学习注意力和舒适度。同时,电子鼻结合机器学习为剩菜污染检测提供了一种快速有效的解决方案,但分类准确率仍有提升空间。未来,这两方面的研究可分别优化智能照明系统和食品安全检测技术,并具有跨领域综合应用的潜力。原创 2025-07-16 13:21:06 · 9 阅读 · 0 评论 -
75、被动前向散射雷达人体检测与室内光环境对学生学习注意力的影响
本博文探讨了被动前向散射雷达在人体检测中的应用以及室内光环境对学生学习注意力的影响。研究利用时域分析、功率谱密度分析、主成分分析(PCA)和人工神经网络(ANN)对不同地点和时间段的人体目标进行检测与分类,结果显示ANN分类方法在夜间检测中表现最佳。同时,实验表明570 lx - 6500 K的光环境最有利于提高学生注意力和学习效率,预刺激也对注意力集中具有积极作用。总结指出,优化环境条件可有效提升检测精度和学习效果。原创 2025-07-15 12:31:34 · 8 阅读 · 0 评论 -
74、智能环境下多居民活动识别与人体检测技术研究
本文探讨了智能环境下多居民活动识别和人体检测技术的研究进展。重点分析了自适应分析模型在多居民活动识别中的应用,以及被动前向散射雷达结合PCA和ANN在人体检测中的方法。实验结果表明,LC-RF分类器在活动识别中表现出色,而ANN在人体检测分类中优于PCA。这些技术在智能家居和边境安全领域具有广阔的应用前景,但仍需解决实时性、环境干扰等挑战。原创 2025-07-14 13:39:16 · 7 阅读 · 0 评论 -
73、道路表面湿度检测与多居民活动识别研究
本博文主要研究了道路表面湿度检测与多居民活动识别的相关技术与模型。在道路表面湿度检测方面,通过比较不同的CNN架构,CMCMDD1模型表现出较高的准确率和高效的训练预测速度。同时,研究了汽车和轮胎差异对分类性能的影响,并与其他模型如RNN-LSTM、BLSTM进行了基准评估。在多居民活动识别中,提出了一种基于时空信息的自适应分析模型,结合空间和时间信息,提高了智能家居环境中多居民活动识别的准确性。最后,总结了模型性能优势,探讨了未来研究方向和技术应用前景。原创 2025-07-13 16:36:39 · 7 阅读 · 0 评论 -
72、电力负荷预测与路面湿度分类的研究进展
本博文综述了电力负荷预测与路面湿度分类领域的研究进展。电力负荷预测方面,回顾了2019-2021年IEEE Xplore数据库中的11篇相关文献,分析了数据集特征、时间间隔、训练测试集划分及评估指标,指出引入独立变量和合理划分数据集有助于提高预测准确性。路面湿度分类方面,提出了基于CNN的新架构(CnM DDm和CMCMDD),结合MFCC声学特征,有效提升了分类性能,实验结果显示CMCMDD1架构在准确率和预测时间方面表现最优。最后,对两个领域的发展方向进行了展望。原创 2025-07-12 10:47:54 · 7 阅读 · 0 评论 -
71、科技前沿:体温检测与电力负荷预测的创新研究
本文探讨了体温检测和电力负荷预测领域的创新研究成果。针对MOST设备体温检测受测量距离影响的问题,研究人员通过补偿算法显著提高了测量的准确性和可靠性。在电力负荷预测方面,通过系统性文献综述梳理了基于LSTM等机器学习方法的研究进展,展示了其在短期负荷预测中的应用潜力。这些研究为疫情防控和电力资源高效管理提供了重要技术支持。原创 2025-07-11 12:33:49 · 9 阅读 · 0 评论 -
70、面部情绪识别与疫情防控设备的创新应用
本文探讨了面部情绪识别技术在青少年抑郁水平检测中的应用,以及Modular and Open System(MOST)设备在疫情防控中的创新设计与实践。研究展示了通过面部特征分类评估抑郁程度的初步成果,并重点介绍了MOST设备如何通过集成非接触式体温测量、信息记录和健康状态提示等功能,提高疫情防控效率。通过引入距离补偿算法,MOST显著提升了体温测量的准确性,为公共场所的快速筛查提供了技术支持。原创 2025-07-10 15:10:34 · 9 阅读 · 0 评论 -
69、基于面部情感识别的抑郁水平检测
本研究开发了一款基于面部情感识别的移动应用程序,旨在帮助用户检测自身的抑郁水平。通过结合面部情感识别技术和专业咨询得出的问卷结果,应用能够评估用户的抑郁严重程度,并提供相应的治疗建议,包括锻炼和饮食方案。研究结果显示,该方法在训练和测试阶段均表现出较高的准确性,具有良好的市场潜力和实际应用价值。未来工作将聚焦于优化算法、改善用户体验及拓展应用功能,以提供更全面的心理健康服务。原创 2025-07-09 09:51:10 · 9 阅读 · 0 评论 -
68、基于计算机辅助的脑肿瘤自动检测系统
本文介绍了一种基于计算机辅助的脑肿瘤自动检测系统,结合图像预处理、特征提取、支持向量机(SVM)分类和图形用户界面(GUI)设计,实现了对MRI脑图像的高效分类和肿瘤尺寸计算。研究使用140张MRI图像并通过五折交叉验证评估模型性能,最终分类准确率达到85.7%。系统还提供了直观的GUI界面,便于医生操作和诊断,具有较高的临床应用价值。未来将通过数据扩充、良恶性分类和多模态数据融合进一步提升系统性能。原创 2025-07-08 14:30:04 · 7 阅读 · 0 评论 -
67、基于语音和医学影像的自动检测技术研究
本文探讨了基于语音和医学影像的自动检测技术在抑郁症和脑肿瘤诊断中的应用。通过提取语音中的声学特征并筛选出对设备依赖性较低的特征,结合RNN模型进行抑郁症检测,同时使用SVM分类器对脑肿瘤MRI图像进行智能诊断。文章总结了两项技术的优势与局限性,并展望了未来发展方向,包括数据扩充、模型优化及跨领域应用,以提升医疗诊断的效率与准确性。原创 2025-07-07 10:56:03 · 8 阅读 · 0 评论 -
66、基于半扫描牛顿 - SOR迭代与语音特征的数值求解及抑郁检测研究
本博文研究提出了一种新的半扫描牛顿-SOR(HSNSOR)迭代方法,用于求解非线性Fredholm积分方程(NFIE-2),并通过数值实验验证了其在收敛速度和计算效率方面的优势。同时,研究还探讨了基于语音特征的自动抑郁检测方法,利用声学特征和循环神经网络对马来西亚语语音中的抑郁状态进行分类,并取得了较高的检测准确率。两种方法分别在数值计算和心理健康诊断领域展现了良好的应用前景。原创 2025-07-06 16:39:29 · 9 阅读 · 0 评论 -
65、室内导航与非线性积分方程求解技术探索
本博客主要探讨了两项技术的研究成果:一是基于图像识别和人工智能的室内导航系统iFind,该系统通过图像特征匹配和A*算法实现高效精准的室内导航;二是用于求解非线性Fredholm积分方程的半扫描牛顿-SOR迭代法(HSNSOR),该方法结合了牛顿法的线性化能力和SOR方法的求解效率,具有更快的收敛速度和更高的计算效率。博客还分析了两项技术的应用场景与未来发展方向,涵盖商业场所导航、交通枢纽导航、医院导航以及物理模拟、工程优化等多个领域。原创 2025-07-05 15:50:06 · 8 阅读 · 0 评论 -
64、电力预测与室内导航技术研究
本博客介绍了两项研究:一是通过CRISP-DM方法确定最佳历史负荷数据时长以构建电力使用预测模型,实验表明两年数据效果最佳;二是开发了iFind室内导航系统,结合图像识别和路径查找算法,有效解决GPS在室内的定位难题,并具有实际应用潜力。原创 2025-07-04 16:07:42 · 7 阅读 · 0 评论 -
63、基于长短期记忆网络架构的用电预测模型评估
本文研究了基于长短期记忆网络(LSTM)的短期电力负荷预测模型,旨在确定历史负荷数据集的最佳持续时间。通过使用丹麦一个家庭的用电数据,实验结果表明,使用两年的历史数据训练的LSTM模型在预测准确性上表现最佳。文章还讨论了模型在不同用电场景(如公共假期、周末和工作日)下的预测表现,并提出了未来改进的方向。原创 2025-07-03 12:09:49 · 5 阅读 · 0 评论 -
62、基于深度学习的脑电图分类新方法用于运动障碍神经疾病诊断
本研究探讨了基于深度学习的脑电图(EEG)分类方法,用于诊断运动障碍神经疾病。通过小波变换(WT)和短时傅里叶变换(STFT)将EEG信号转换为Scalogram和Spectrogram图像,并利用AlexNet和LeNet两种卷积神经网络进行分类。实验结果表明,使用AlexNet结合Scalogram图像的方法在准确率和F1分数上均优于传统方法和LeNet,为运动神经元损伤疾病的诊断提供了更优的解决方案。原创 2025-07-02 12:41:37 · 6 阅读 · 0 评论 -
61、CoinChain:高效的隐私币混合工具
本文介绍了CoinChain,一种高效的隐私币混合工具,通过结合CoinJoin机制和二进制可分的硬币面额设计,实现了高匿名性和交易隐私保护。文章详细分析了隐私币的发展历程及其挑战,探讨了CoinChain的工作原理、交易特点、硬币混合有效性证明以及其局限性,并提出了未来改进方向。CoinChain在保障交易金额不可追踪的同时,提供了实用的隐私测试方法,为隐私加密货币的发展提供了有价值的思路。原创 2025-07-01 12:50:14 · 5 阅读 · 0 评论 -
60、机器学习模型评估与匿名加密货币隐私保护
本文探讨了机器学习模型评估与匿名加密货币隐私保护两个主题。在机器学习部分,分析了召回率、F1分数和ROC AUC分数等评估指标,并对CatBoost、XGboost、GBM和随机森林等模型进行了比较,同时使用LIME和SHAP进行可视化分析。在匿名加密货币部分,介绍了隐私保护的发展历程,讨论了多种匿名方案的局限性,并重点分析了CoinChain协议的优势。最后,展望了机器学习与匿名加密货币结合的潜在应用,为未来的研究和发展提供了新思路。原创 2025-06-30 12:58:58 · 6 阅读 · 0 评论 -
59、机器学习在太阳能辐射预测与医疗记录分析中的应用研究
本文探讨了机器学习在太阳能辐射预测和医疗记录分析中的应用。在太阳能辐射预测方面,基于NNARX模型并采用多种训练函数进行评估,结果显示Levenberg–Marquardt训练函数表现最优。在医疗记录分析中,重点研究了决策树集成模型及其可视化分析技术,发现SHAP在模型解释方面具有更高的可解释性。此外,文章还展望了未来研究方向,并强调了模型可解释性与多学科合作的重要性。原创 2025-06-29 15:23:56 · 5 阅读 · 0 评论 -
58、图像分割与太阳能辐射预测建模技术解析
本文深入解析了图像分割与太阳能辐射预测建模中的关键技术。在图像分割领域,DGLPSOC方法通过主导灰度级与粒子群优化,有效解决了数据稀缺问题,并在脑肿瘤分割等应用中表现出优越的性能。在太阳能辐射预测建模方面,基于NNARX模型与多种训练函数的分析表明,Levenberg–Marquardt算法在预测精度与收敛速度方面表现最佳。文章还探讨了两种技术的实际应用场景及未来发展方向,并提供了方法选择的实用建议。原创 2025-06-28 09:48:27 · 6 阅读 · 0 评论 -
57、基于主导灰度级的粒子群优化算法在脑肿瘤亚区域分割中的应用
本文提出了一种基于主导灰度级的粒子群优化聚类方法(DGLPSOC),用于脑肿瘤亚区域的自动分割。该方法结合了图像预处理和增强技术,并利用PSO算法优化聚类过程,以准确分割MRI图像中的整个肿瘤、肿瘤核心和增强肿瘤区域。实验结果表明,DGLPSOC在分割性能上优于传统聚类方法和其他监督分割方法,具有计算资源需求低、无需训练数据和实时推断能力等优势,为脑肿瘤分割提供了一种高效且适应性强的解决方案。原创 2025-06-27 11:44:22 · 7 阅读 · 0 评论 -
56、结合时间敏感技术实现高精度计算及脑肿瘤分割新方法
本文探讨了时间敏感网络(TSN)与时间协调控制(TCC)技术在工业运动控制中的高精度实时应用,以及一种基于主导灰度级的粒子群优化聚类方法在脑肿瘤子区域分割中的创新应用。通过TSN和TCC技术的结合,实现了多电机同步控制的超高精度,而新型的脑肿瘤分割方法则提供了一种无需大量训练数据、高效准确的无监督解决方案。这些技术在工业自动化和医疗影像领域具有广阔的应用前景。原创 2025-06-26 10:19:05 · 7 阅读 · 0 评论 -
55、马来西亚社交媒体中“社交距离”与“物理距离”相关分析及工业实时技术介绍
本文分析了2021年马来西亚社交媒体上关于‘社交距离’和‘物理距离’的讨论趋势与公众情绪,并介绍了工业4.0背景下时间敏感网络(TSN)和时间协调计算(TCC)技术在智能制造中的应用。社交媒体数据显示,尽管疫情持续,相关词汇使用频率下降,且公众情绪总体偏消极。TSN和TCC技术则通过实时数据传输与精确时间同步,为工业自动化提供了高效、可靠的解决方案。文章还探讨了这些技术的优势、挑战及未来发展趋势。原创 2025-06-25 13:33:37 · 7 阅读 · 0 评论 -
54、电商系统测试与疫情社交距离用语分析
本文探讨了两个重要主题:Best Bazaar电商平台系统的功能测试结果,以及马来西亚在新冠疫情期间社交媒体上关于‘社交距离’和‘物理距离’的用语趋势与公众态度分析。通过系统测试,验证了该电商平台在买家和卖家功能上的稳定性,并为手工食品生产者提供了数字化解决方案。同时,通过自然语言处理技术对社交媒体推文进行分析,揭示了公众对社交距离术语的使用趋势、情感态度及多语言文化背景下的认知差异。研究为疫情防控期间的信息传播策略和电商系统优化提供了有价值的参考。原创 2025-06-24 15:30:30 · 33 阅读 · 0 评论 -
53、菲涅尔透镜缺陷分类与手工食品电商平台创新
本文探讨了深度学习技术在菲涅尔透镜缺陷分类中的应用以及手工食品电商平台的创新设计。通过使用迁移学习和卷积神经网络(CNN),结合CycleGAN与几何图像增强技术,实现了对菲涅尔透镜缺陷的高准确率分类。此外,针对手工食品生产者的独特需求,设计了一个专门的电商平台,支持产品定制和智能库存管理,特别是对临近过期产品的自动清仓处理。这两个创新方案分别在工业检测和电商领域展现了巨大的应用潜力。原创 2025-06-23 11:32:22 · 9 阅读 · 0 评论 -
52、利用深度学习技术进行菲涅尔透镜缺陷分类
本文探讨了利用深度学习技术对塑料注塑成型的菲涅尔透镜进行缺陷分类的方法。由于传统图像处理技术在菲涅尔透镜凹槽图案和表面纹理差异的情况下存在局限性,本文提出结合混合CycleGAN与几何增强技术扩展有限的缺陷样本数据集,并采用基于迁移学习的深度卷积神经网络(CNN)进行缺陷分类。实验结果表明,该方法在划痕、凹痕和FM三类缺陷上的分类准确率较高,具有良好的泛化能力和实用性。研究还展望了未来改进方向,如探索更复杂的模型结构和多模态数据融合等。原创 2025-06-22 15:35:00 · 6 阅读 · 0 评论 -
51、作者笔迹识别中等宽和等频离散化方法的性能比较
本文探讨了在作者笔迹识别中应用等宽(EW)和等频(EF)离散化方法对高阶联合矩不变量(HUMI)特征的性能比较。通过使用多种分类器和不同的实验设置(如5折交叉验证、10折交叉验证以及训练测试分割),研究发现两种离散化方法均显著提升了分类性能。其中,等宽离散化方法在大多数分类器上表现更优,尤其是在DTNB分类器上达到了接近100%的准确率;而等频离散化方法在朴素贝叶斯和IBk分类器上也有出色表现。研究还提出了未来优化方向,包括实验设置多样化、组合离散化方法、特征提取优化以及分类器改进等。原创 2025-06-21 09:15:06 · 5 阅读 · 0 评论 -
50、移动传感器APT检测框架指纹技术解析
本文介绍了一种用于智能手机高级持续威胁(APT)检测的FORMAP框架,结合MITRE框架、移动传感器和攻击树技术,全面分析智能手机传感器的漏洞及APT攻击路径。通过情境感知技术评估攻击影响,并利用人工智能优化检测模型,提高智能手机安全性。文章还探讨了FORMAP框架的优势、挑战及未来发展方向。原创 2025-06-20 12:16:13 · 6 阅读 · 0 评论 -
49、基于TTP和MITRE的移动传感器APT检测框架(FORMAP)
本文提出了一种基于TTP和MITRE框架的移动传感器APT检测框架FORMAP,旨在通过结合攻击树和MITRE框架的优势,识别和防范针对智能手机传感器的APT攻击。文章详细分析了APT攻击的生命周期、智能手机传感器的漏洞,并设计了基于威胁建模的攻击树和检测框架,以提升智能手机的安全防护能力。原创 2025-06-19 16:38:49 · 6 阅读 · 0 评论 -
48、移动高级持续威胁检测:SHOVEL框架解析
本文深入解析了移动设备上高级持续威胁(APT)的攻击流程及防御方案,重点介绍了SHOVEL检测框架的设计与应用。结合MITRE ATT&CK框架、信息安全风险管理(ISRM)、零信任模型和态势感知(SA)等关键概念,文章提出了基于用户行为分析和威胁建模的APT检测方法。同时,通过用户人格分析和攻击树实例,揭示了用户行为与APT攻击易感性之间的关联。SHOVEL框架具备自适应决策、自动预测与反思能力,符合CIA安全原则,适用于企业、政府和金融等领域的移动安全防护。文章最后展望了未来APT检测的发展方向,包括基原创 2025-06-18 16:07:27 · 6 阅读 · 0 评论 -
47、驾驶模拟器与移动高级持久威胁检测技术解析
本文深入解析了驾驶模拟器在驾驶员教育中的应用及其设计要点,同时探讨了移动设备面临的高级持久威胁(APT)攻击及其检测技术。文章介绍了基于设备行为的SHOVEL框架,结合用户行为分析、攻击树和MITRE ATT&CK框架,实现对APT攻击的精准检测。通过分析APT攻击的生命周期、用户行为对安全威胁的影响以及实际APT攻击案例,提出了提升驾驶教育效果和移动设备安全性的未来发展方向。原创 2025-06-17 12:51:40 · 8 阅读 · 0 评论 -
46、用于驾驶员教育的人工智能驾驶模拟器:技术与应用
本文探讨了人工智能(AI)、计算智能(CI)和虚拟现实(VR)技术在驾驶员教育中的应用,回顾了相关文献并分析了驾驶模拟器在培训中的效果。研究指出,驾驶模拟器具有高保真度、安全性、可控性和可重复性等优势,结合AI和VR技术可以提供更真实、沉浸的学习体验。同时,文中也讨论了当前研究中的不足,如缺乏统一软件平台、对特殊人群的研究有限以及VR中的晕动症问题。未来的研究方向包括技术融合、统一平台开发、特殊人群应用拓展及晕动症问题的解决,旨在提升驾驶员的安全意识和技能水平。原创 2025-06-16 09:15:23 · 10 阅读 · 0 评论 -
45、基于视线追踪的认证系统与驾驶模拟器研究综述
本文综述了基于视线追踪的认证系统以及驾驶模拟器的研究进展。首先,介绍了视线追踪认证系统的相关工作、密码类型、实验设置与实现,并对比了PIN输入系统与图片密码系统的优劣。随后,讨论了驾驶模拟器的技术应用现状,包括AI交通和VR技术的作用,并分析了其在驾驶教育中的意义与未来发展方向。通过结合AI和VR技术,驾驶模拟器有望为用户提供更加真实和沉浸的学习体验,提升驾驶技能与安全性。原创 2025-06-15 12:58:00 · 7 阅读 · 0 评论 -
44、家庭活动序列模式分析与基于凝视的认证密码比较
本文探讨了家庭活动序列模式分析与基于凝视的认证密码比较两个主题。在家庭活动分析中,通过数据预处理和转移概率分析,识别了常见及从未发生的活动转移,并讨论了其在健康监测和生活习惯改善中的潜在应用。同时,比较了基于凝视的PIN密码与图片密码的可用性,结果显示在视觉相似性较高的情况下,PIN密码更具优势。文章还展望了未来研究方向,包括异常活动检测、多模态认证和自适应密码调整等。原创 2025-06-14 09:45:44 · 6 阅读 · 0 评论