欧拉筛 素数打表

本文介绍如何使用欧拉筛法(线性筛)高效地找出一定范围内的所有素数。该方法的时间复杂度为O(n),通过从2开始标记每个质数的倍数来确定合数,确保每个合数仅被其最小的质因数筛一次。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当遇到需要求一定范围内的素数来使用时,可以使用欧拉筛法求出范围内全部的素数,且时间复杂度为O(n),也称线性筛。

代码如下

public List<Integer> getPrimes(int n){
        List<Integer> primes = new ArrayList<>();
        boolean st[] = new boolean[n+1];
        for(int i = 2; i <= n; i ++){
            if(!st[i]){
                primes.add(i);
            }
            for(int p : primes){
                if(p * i > n)
                    break;
                st[p * i] = true;
                if(i % p == 0){
                    break;
                }
            }
        }
        return primes;
    }

利用的思想即是每个质数的倍数都一定不是质数,因此可以从2开始向后标记,最后得到范围内全部的质数。
但为避免重复标记,通过 i % p == 0 实现每个合数都只被最小的质因数筛一次

i = 4时,此时primes = {2,3}
i * p = 8,8标记为合数,此时 4 % 2 == 0,即表示其后的合数可以用2筛去而非用4
即省略的筛是i = 4,p = 3,i * p = 12情况,12不必用4 * 3筛去,在后续处理中,12会由2筛去

i = 6时,此时primes = {2,3,5}
i * p = 12,12标记为合数,此时即实现了12是由它的最小质因数2筛去的,对于12只筛了一次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值