测试爱因斯坦的广义相对论
1. 行星绕太阳的运动
在物理学的发展历程中,牛顿和开普勒的定律为我们提供了理解行星运动的基础。牛顿的万有引力定律 (F = \frac{GmM}{r^2}) 描述了两个物体之间的引力作用。然而,牛顿引力理论在解释某些天体现象时遇到了困难,最著名的便是水星轨道的异常进动问题。
水星轨道的进动每世纪超出预期43弧秒,这一现象无法用牛顿引力理论解释。爱因斯坦的广义相对论成功解决了这个问题,通过引入施瓦茨解(Schwarzschild solution),爱因斯坦的理论不仅解释了水星轨道的进动,还为其他天体运动提供了新的视角。
水星轨道进动
牛顿的引力理论规定,行星在围绕恒星旋转时会描绘出一个封闭的椭圆形轨道。然而,太阳系中的其他行星对水星轨道的扰动使得其轨道进动,即轨道会稳步移动或“进动”。根据牛顿引力理论,水星的轨道进动每世纪约为500弧秒。然而,观测结果显示,实际进动值为543弧秒,多出的43弧秒无法用牛顿理论解释。
爱因斯坦的广义相对论通过其场方程的最低阶修正,完美解释了这额外的43弧秒。具体来说,爱因斯坦的场方程引入了新的项,这些项在牛顿理论的基础上提供了额外的轨道进动,从而使得理论与观测结果完全吻合。
施瓦茨解
施瓦茨解是广义相对论中描述球对称质量外部时空的经典解。它的重要性在于能够精确描述大质量天体周围的时空弯曲情况。施瓦茨解的度规形式为:
[ ds^2 = (1 - \frac{2m}{r})dt^2 - (1 - \frac{2m}{r})^{-1}dr^2 - r^2(d\theta^2 + \sin^2\theta d\phi^2)