查并集

本文深入探讨了查并集算法的原理与应用,通过一维数组维护团体关系,实现高效的人际关系判断与合并操作。文章详细介绍了find()与join()函数的实现,帮助读者理解并掌握查并集算法的核心思想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

查并集

查并集思想:通过一个一维数组来维护一个团体,最初每一个团体只有一个人,然后通过给的条件,可以将某些人进行合并,从人变成一个团体,最后判断两个人是不是有关系只要看两个人是不是在同一个团体就行。

========================================================

代码

int find(int x)
{
	if(x==pre[x])
		return x;
	else
		return pre[x] = find(pre[x]);
}
void join(int x, int y)
{
	int xx = find(x);
	int yy = find(y);
	if(xx!=yy)
		pre[yy] = xx;
}
<think>嗯,用户现在问的是BFS、DFS和查并集(也就是)。我需要先回顾一下这三个概念的定义、用途和区别。用户之前已经问过图论的应用,现在可能是在深入学习相关算法,或者是为面试或考试做准备。 首先,BFS(广度优先搜索)和DFS(深度优先搜索)是图遍历的基本算法,而(Disjoint Set Union, DSU)用于处理合的合与查询问题。用户可能想了解这三者的基本概念、应用场景以及它们之间的不同。 接下来要考虑用户的需求层次。他们可能想知道每个算法的基本原理、代码实现、时间复杂度,以及实际应用例子。或者,他们可能需要比较这三者的优缺点,了解在什么情况下使用哪种算法更合适。 需要确保回答结构清晰,分点解释每个算法,然后比较它们。可能还需要举一些实际的例子,比如BFS用于最短路径,DFS用于拓扑排序,用于连通性问题。同时,要注意用户之前的问题是关于图论的应用,所以这里需要保持连贯性,说明这些算法如何应用于实际问题。 另外,用户可能混淆了“查并集”和“”,正确的术语是,所以回答中需要明确指出,避免混淆。同时,要注意用中文术语,比如“节点”而不是“结点”,保持一致性。 要检查是否有常见的误区需要澄清,比如BFS和DFS的时间复杂度在不同数据结构(邻接矩阵 vs 邻接表)下的差异,或者的路径压缩和按秩合优化。 最后,总结部分需要简明扼要,强调三者的不同应用场景和选择依据,帮助用户根据具体问题选择合适的算法。</think>--- ### **BFS(广度优先搜索)** #### **核心思想** - **逐层扩散**:从起点出发,按层次遍历所有可达节点(先访问距离起点最近的节点)。 - **数据结构**:队列(FIFO)。 - **时间复杂度**:$O(V + E)$($V$为节点数,$E$为边数)。 #### **典型应用** 1. **无权图的最短路径**(如迷宫逃生、社交网络中的最少中间人); 2. **状态空间搜索**(如八数码问题、单词接龙); 3. **网络爬虫**(按层级抓取网页,避免重复访问)。 #### **代码模板(Python)** ```python from collections import deque def bfs(start, graph): visited = set() queue = deque([start]) visited.add(start) while queue: node = queue.popleft() for neighbor in graph[node]: if neighbor not in visited: visited.add(neighbor) queue.append(neighbor) ``` --- ### **DFS(深度优先搜索)** #### **核心思想** - **递归深入**:从起点出发,沿一条路径走到尽头,再回溯探索其他分支。 - **数据结构**:栈(LIFO)或递归调用栈。 - **时间复杂度**:$O(V + E)$。 #### **典型应用** 1. **拓扑排序**(如课程选修顺序、任务依赖关系); 2. **连通性问题**(如岛屿数量、图的连通分量); 3. **回溯法**(如数独求解、全排列生成)。 #### **代码模板(Python)** ```python def dfs(node, graph, visited): if node in visited: return visited.add(node) for neighbor in graph[node]: dfs(neighbor, graph, visited) ``` --- ### **(Disjoint Set Union, DSU)** #### **核心思想** - **动态连通性管理**:通过树结构合合,快速判断两个元素是否属于同一合。 - **优化手段**:路径压缩(降低树高) + 按秩合(平衡树结构)。 - **时间复杂度**:接近$O(1)$(经过优化后)。 #### **典型应用** 1. **动态连通性问题**(如社交网络好友关系合、电路连通性检测); 2. **最小生成树(Kruskal算法)**:判断边是否会形成环; 3. **图像像素连通区域标记**。 #### **代码模板(Python)** ```python class DSU: def __init__(self, size): self.parent = list(range(size)) self.rank = [1] * size def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) # 路径压缩 return self.parent[x] def union(self, x, y): x_root = self.find(x) y_root = self.find(y) if x_root == y_root: return # 按秩合 if self.rank[x_root] < self.rank[y_root]: self.parent[x_root] = y_root else: self.parent[y_root] = x_root if self.rank[x_root] == self.rank[y_root]: self.rank[x_root] += 1 ``` --- ### **三者对比与选择原则** | **算法** | **核心目标** | **适用场景** | **优势** | **局限性** | |----------|---------------------------|----------------------------------|----------------------------|-------------------------| | BFS | 最短路径(无权图) | 层级遍历、状态扩散 | 保证最优解 | 空间复杂度高(存储队列) | | DFS | 路径存在性、连通性 | 回溯问题、拓扑排序 | 空间复杂度低(仅递归栈) | 可能陷入深层无效路径 | | | 动态合合与查询 | 连通性判断、合动态合 | 近乎常数时间操作 | 无法回溯合操作 | --- ### **实际场景示例** 1. **社交网络好友推荐** - **BFS**:计算用户A的N度人脉(二度好友优先推荐); - ****:判断用户A和用户B是否属于同一社群(如“校友群”)。 2. **游戏地图生成** - **DFS**:生成随机迷宫(确保起点到终点有唯一通路); - **BFS**:AI自动寻路(寻找最短逃生路径)。 3. **电路设计验证** - ****:检查所有元件是否连通(避免断路)。 --- ### **总结** - **BFS**:**最短路径**问题优先选择,需注意空间消耗; - **DFS**:适合**探索所有可能性**或**连通性检测**,注意递归深度限制; - ****:**动态合操作**的终极工具,高效解决连通性问题。 **选择策略**: - 需要最短路径 → BFS - 需要遍历所有可能或递归结构 → DFS - 动态合与查询 →
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值