【等离子体】平均自由程和反应速率

本文介绍了气体分子aaa与bbb之间的平均自由程λab的计算公式,涉及粒子作用截面σab和数密度n_b。通过理想气态方程得到数密度,并给出了碰撞频率νab的表达式。进一步,利用粒子浓度na、碰撞频率和作用截面计算了反应速率R,阐述了气体分子间的相互作用与反应动力学。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一类气体分子为aaa,另一类气体分子为bbb,两者之间的平均自由程定义为:一个粒子aaa经过一群分子bbb时发生碰撞所经过的平均距离,表示为:
λab=1σabnb\lambda_{ab}=\frac{1}{\sigma_{ab} n_b}λab=σabnb1
上式中σab\sigma_{ab}σab为粒子aaabbb作用的截面(cross section of interaction),因此这里包括了 弹性碰撞、电离、吸附等不同作用过程的截面。nbn_bnb为粒子bbb的数密度[1/m31/m^31/m3](number density),可以根据理想气态方程
p=nkBTp=nk_BTp=nkBT
得出n=pkBTn=\frac{p}{k_B T}n=kBTp,其中kBk_BkB为玻尔兹曼常数,kB=1.38×10−23J/Kk_B=1.38\times 10^{-23}J/KkB=1.38×1023J/K

以速度 vav_ava运动的粒子aaa 将与静止的一组bbb型粒子碰撞的频率ν\nuν为:
νab=vaλab=vaσabnb\nu_{ab}=\frac{v_{a}}{\lambda_{ab}}=v_a\sigma_{ab}n_bνab=λabva=vaσabnb
如果粒子aaa的浓度为nan_ana,则反应速率(rate of reaction)R为:
R=na∗νab=nanbσabva(cm3⋅sec)−1 R=n_a*\nu_{ab}=n_a n_b \sigma_{ab} v_a (cm^3 \cdot sec)^{-1}R=naνab=nanbσabva(cm3sec)1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值