给定一类气体分子为aaa,另一类气体分子为bbb,两者之间的平均自由程定义为:一个粒子aaa经过一群分子bbb时发生碰撞所经过的平均距离,表示为:
λab=1σabnb\lambda_{ab}=\frac{1}{\sigma_{ab} n_b}λab=σabnb1
上式中σab\sigma_{ab}σab为粒子aaa与bbb作用的截面(cross section of interaction),因此这里包括了 弹性碰撞、电离、吸附等不同作用过程的截面。nbn_bnb为粒子bbb的数密度[1/m31/m^31/m3](number density),可以根据理想气态方程
p=nkBTp=nk_BTp=nkBT
得出n=pkBTn=\frac{p}{k_B T}n=kBTp,其中kBk_BkB为玻尔兹曼常数,kB=1.38×10−23J/Kk_B=1.38\times 10^{-23}J/KkB=1.38×10−23J/K
以速度 vav_ava运动的粒子aaa 将与静止的一组bbb型粒子碰撞的频率ν\nuν为:
νab=vaλab=vaσabnb\nu_{ab}=\frac{v_{a}}{\lambda_{ab}}=v_a\sigma_{ab}n_bνab=λabva=vaσabnb
如果粒子aaa的浓度为nan_ana,则反应速率(rate of reaction)R为:
R=na∗νab=nanbσabva(cm3⋅sec)−1 R=n_a*\nu_{ab}=n_a n_b \sigma_{ab} v_a (cm^3 \cdot sec)^{-1}R=na∗νab=nanbσabva(cm3⋅sec)−1