动态规划3——背包类动态规划详解

动态规划之背包问题详解

背包问题是动态规划领域的核心内容,也是算法竞赛和面试中的常考题型。本文系统性地介绍各类背包问题的解题思路、状态转移方程和优化技巧,帮助读者全面掌握这一重要算法范式。

一、01背包问题

问题描述

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。第 i 件物品的体积是 vi,价值是 wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

核心思想

01背包的核心在于每件物品只有选与不选两种状态,状态转移方程为:

f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])

代码实现

二维解法(基础)
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 1005;
int f[MAXN][MAXN];  // f[i][j]表示前i件物品放入容量为j的背包的最大价值
int v[MAXN], w[MAXN]; // 体积和价值

int main() {
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j <= m; j++) {
            f[i][j] = f[i-1][j]; // 不选第i件物品
            if (j >= v[i]) // 能选第i件物品
                f[i][j] = max(f[i][j], f[i-1][j-v[i]] + w[i]);
        }
    }
    cout << f[n][m];
    return 0;
}
一维优化(空间优化)
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 1005;
int f[MAXN]; // 优化为一维数组
int v[MAXN], w[MAXN];

int main() {
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i++)
        for (int j = m; j >= v[i]; j--) // 逆序遍历避免覆盖
            f[j] = max(f[j], f[j-v[i]] + w[i]);
    
    cout << f[m];
    return 0;
}

关键点

  1. 逆序遍历保证每个物品只被选取一次

  2. 状态转移基于前一个状态的值

  3. 时间复杂度O(NV),空间复杂度O(V)

二、完全背包问题

问题描述

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

核心思想

与01背包的区别在于物品可以无限次选取,状态转移方程为:

f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i])

代码实现

二维解法
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 1005;
int f[MAXN][MAXN];
int v[MAXN], w[MAXN];

int main() {
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j <= m; j++) {
            f[i][j] = f[i-1][j];
            if (j >= v[i])
                f[i][j] = max(f[i][j], f[i][j-v[i]] + w[i]);
        }
    }
    cout << f[n][m];
    return 0;
}
一维优化
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 1005;
int f[MAXN];
int v[MAXN], w[MAXN];

int main() {
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i++)
        for (int j = v[i]; j <= m; j++) // 正序遍历允许重复选取
            f[j] = max(f[j], f[j-v[i]] + w[i]);
    
    cout << f[m];
    return 0;
}

与01背包的区别

  1. 正序遍历允许物品多次选取

  2. 状态转移基于当前行而不是上一行

  3. 时间复杂度仍为O(NV),但状态转移逻辑不同

三、多重背包问题

问题描述

有 N 种物品和一个容量是 V 的背包。第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。

二进制优化

当物品数量较大时,使用二进制优化将多重背包转化为01背包:

#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 25000; // 1000*log2000 ≈ 22000
int f[MAXN], v[MAXN], w[MAXN];

int main() {
    int n, m, cnt = 0;
    cin >> n >> m;
    
    // 二进制拆分
    for (int i = 1; i <= n; i++) {
        int a, b, s;
        cin >> a >> b >> s;
        int k = 1;
        while (k <= s) {
            cnt++;
            v[cnt] = a * k;
            w[cnt] = b * k;
            s -= k;
            k *= 2;
        }
        if (s > 0) {
            cnt++;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }
    
    // 01背包求解
    for (int i = 1; i <= cnt; i++)
        for (int j = m; j >= v[i]; j--)
            f[j] = max(f[j], f[j-v[i]] + w[i]);
    
    cout << f[m];
    return 0;
}

优化原理

  1. 将数量s拆分为2的幂次之和(1,2,4,...,2^k,s-2^k)

  2. 每个拆分后的物品视为独立的01背包物品

  3. 优化时间复杂度从O(NVS)降为O(NVlogS)

四、分组背包问题

问题描述

给定N组物品和一个容量为V的背包。每组物品有若干个,但在同一组内,最多只能选择一件物品。每件物品有其对应的体积和价值。目标是选择物品放入背包,使得总体积不超过背包容量,且总价值最大。

状态转移

f[i][j] = max(f[i-1][j], max_{1≤k≤s_i}(f[i-1][j-v_{ik}] + w_{ik}))

代码实现

#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 105;
int f[MAXN][MAXN], v[MAXN][MAXN], w[MAXN][MAXN], s[MAXN];

int main() {
    int n, m;
    cin >> n >> m;
    
    for (int i = 1; i <= n; i++) {
        cin >> s[i];
        for (int j = 1; j <= s[i]; j++)
            cin >> v[i][j] >> w[i][j];
    }
    
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j <= m; j++) {
            f[i][j] = f[i-1][j]; // 不选该组任何物品
            for (int k = 1; k <= s[i]; k++) {
                if (j >= v[i][k])
                    f[i][j] = max(f[i][j], f[i-1][j-v[i][k]] + w[i][k]);
            }
        }
    }
    
    cout << f[n][m];
    return 0;
}

优化技巧

  1. 使用一维数组优化空间

  2. 每组内部循环放在最内层

  3. 逆序遍历背包容量

五、二维费用背包问题

问题特点

背包限制条件从单一容量变为两个维度(如重量和体积、金钱和时间等)

潜水员问题

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int MAXM = 85, MAXN = 25;
int f[MAXM][MAXN]; // f[j][k]: 氧气至少j,氮气至少k的最小重量
int O2[MAXN], N2[MAXN], W[MAXN];

int main() {
    int m, n, k;
    cin >> m >> n >> k;
    
    memset(f, 0x3f, sizeof f);
    f[0][0] = 0;
    
    for (int i = 1; i <= k; i++)
        cin >> O2[i] >> N2[i] >> W[i];
    
    for (int i = 1; i <= k; i++) {
        for (int j = m; j >= 0; j--) {
            for (int k = n; k >= 0; k--) {
                int nj = max(0, j - O2[i]);
                int nk = max(0, k - N2[i]);
                f[j][k] = min(f[j][k], f[nj][nk] + W[i]);
            }
        }
    }
    
    cout << f[m][n];
    return 0;
}

宠物小精灵收服

#include <iostream>
#include <algorithm>
using namespace std;

const int MAXM = 505, MAXN = 1005;
int f[MAXN][MAXM]; // f[j][k]: 使用j个球,消耗k体力的最大收服数
int balls[MAXN], damage[MAXM];

int main() {
    int n, m, k;
    cin >> n >> m >> k;
    m--; // 保留1点体力
    
    for (int i = 1; i <= k; i++)
        cin >> balls[i] >> damage[i];
    
    for (int i = 1; i <= k; i++) {
        for (int j = n; j >= balls[i]; j--) {
            for (int k = m; k >= damage[i]; k--) {
                f[j][k] = max(f[j][k], f[j-balls[i]][k-damage[i]] + 1);
            }
        }
    }
    
    int max_catch = f[n][m], min_damage = 0;
    for (int k = 0; k <= m; k++) {
        if (f[n][k] == max_catch) {
            min_damage = k;
            break;
        }
    }
    
    cout << max_catch << " " << m + 1 - min_damage;
    return 0;
}

六、混合背包问题

问题描述

混合背包结合了01背包、完全背包和多重背包,需要根据物品类型选择不同的处理策略。

通用解法

#include <iostream>
#include <algorithm>
using namespace std;

const int MAXM = 205;
int dp[MAXM];

// 01背包处理
void zeroOnePack(int weight, int value, int capacity) {
    for (int j = capacity; j >= weight; j--)
        dp[j] = max(dp[j], dp[j-weight] + value);
}

// 完全背包处理
void completePack(int weight, int value, int capacity) {
    for (int j = weight; j <= capacity; j++)
        dp[j] = max(dp[j], dp[j-weight] + value);
}

// 多重背包处理(二进制优化)
void multiplePack(int weight, int value, int count, int capacity) {
    if (weight * count >= capacity) {
        completePack(weight, value, capacity);
        return;
    }
    
    int k = 1;
    while (k < count) {
        zeroOnePack(k*weight, k*value, capacity);
        count -= k;
        k *= 2;
    }
    zeroOnePack(count*weight, count*value, capacity);
}

int main() {
    int m, n;
    cin >> m >> n;
    
    for (int i = 0; i < n; i++) {
        int w, v, s;
        cin >> w >> v >> s;
        
        if (s == 0) completePack(w, v, m);
        else if (s == 1) zeroOnePack(w, v, m);
        else multiplePack(w, v, s, m);
    }
    
    cout << dp[m];
    return 0;
}

七、有依赖的背包问题

金明的预算方案

#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 32005;
int main_w[65], main_v[65];
int annex_w[65][3], annex_v[65][3];
int f[MAXN];

int main() {
    int n, m;
    cin >> n >> m;
    
    for (int i = 1; i <= m; i++) {
        int v, p, q;
        cin >> v >> p >> q;
        if (!q) {
            main_w[i] = v;
            main_v[i] = v * p;
        } else {
            annex_w[q][0]++;
            annex_w[q][annex_w[q][0]] = v;
            annex_v[q][annex_w[q][0]] = v * p;
        }
    }
    
    for (int i = 1; i <= m; i++) {
        if (!main_w[i]) continue;
        
        for (int j = n; j >= main_w[i]; j--) {
            // 只选主件
            f[j] = max(f[j], f[j-main_w[i]] + main_v[i]);
            
            // 主件+附件1
            if (j >= main_w[i] + annex_w[i][1])
                f[j] = max(f[j], f[j-main_w[i]-annex_w[i][1]] + main_v[i] + annex_v[i][1]);
            
            // 主件+附件2
            if (j >= main_w[i] + annex_w[i][2])
                f[j] = max(f[j], f[j-main_w[i]-annex_w[i][2]] + main_v[i] + annex_v[i][2]);
            
            // 主件+附件1+附件2
            if (j >= main_w[i] + annex_w[i][1] + annex_w[i][2])
                f[j] = max(f[j], f[j-main_w[i]-annex_w[i][1]-annex_w[i][2]] + main_v[i] + annex_v[i][1] + annex_v[i][2]);
        }
    }
    
    cout << f[n];
    return 0;
}

八、总结与拓展

1.背包问题通用解法框架

  1. 定义状态:明确dp数组的含义

  2. 初始化状态:处理边界条件

  3. 状态转移:根据问题类型选择合适的转移方程

  4. 确定结果:找到最终状态对应的解

2.优化技巧对比

问题类型空间优化时间优化特殊技巧
01背包逆序一维
完全背包正序一维
多重背包一维二进制拆分单调队列优化
分组背包一维组内循环
二维费用二维两个限制条件
混合背包一维分类处理
依赖背包一维主附件组合

3.实际应用场景

  1. 资源分配问题

  2. 投资组合优化

  3. 生产计划制定

  4. 货物装载优化

  5. 时间管理调度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值