自己的学习记录,想到哪里写到哪里。下面用LC指代LangChain。更详细的内容请查看LangChain中文网。
LLM和ChatModel有什么区别?
这是使用LC首先会遇到的问题。
在 Langchain 中,ChatModel 和 LLM(Large Language Model)都是用于处理自然语言输入的模型,但它们之间存在一些区别。
-
训练数据:ChatModel 是基于聊天对话数据进行训练的,而 LLM 是基于大规模文本数据进行训练的。这意味着 ChatModel 更擅长处理聊天对话场景,而 LLM 则具有更广泛的知识和语言理解能力。
-
模型结构:ChatModel 通常采用 GRU、LSTM 或 Transformer 等结构,而 LLM 则采用更大型和复杂的 Transformer 结构。这使得 LLM 能够处理更长的文本序列,并具有更高的语言理解能力。
-
应用场景:ChatModel 适用于聊天机器人、对话系统等场景,而 LLM 可以应用于自然语言生成、文本分类、机器翻译等多个场景。
总之,ChatModel 是一种特定于聊天对话的模型,而 LLM 是一种更通用的大型语言模型。在实际应用中,可以根据具体需求选择合适的模型。
创建LLM和ChatModel对象
考虑到学习方便,我们使用百度的千帆大模型,也就是平时说的文心一言。以前百度单独提供了一个Python包,现在已经整合到langchain_community包里。安装以下包准备环境:
pip install langchain
pip install langchain-core
pip install langchain-community
pip install qianfan
# 试