LangChain入门教程 - 基本问答

自己的学习记录,想到哪里写到哪里。下面用LC指代LangChain。更详细的内容请查看LangChain中文网

LLM和ChatModel有什么区别?

这是使用LC首先会遇到的问题。

在 Langchain 中,ChatModel 和 LLM(Large Language Model)都是用于处理自然语言输入的模型,但它们之间存在一些区别。

  1. 训练数据:ChatModel 是基于聊天对话数据进行训练的,而 LLM 是基于大规模文本数据进行训练的。这意味着 ChatModel 更擅长处理聊天对话场景,而 LLM 则具有更广泛的知识和语言理解能力。

  2. 模型结构:ChatModel 通常采用 GRU、LSTM 或 Transformer 等结构,而 LLM 则采用更大型和复杂的 Transformer 结构。这使得 LLM 能够处理更长的文本序列,并具有更高的语言理解能力。

  3. 应用场景:ChatModel 适用于聊天机器人、对话系统等场景,而 LLM 可以应用于自然语言生成、文本分类、机器翻译等多个场景。

总之,ChatModel 是一种特定于聊天对话的模型,而 LLM 是一种更通用的大型语言模型。在实际应用中,可以根据具体需求选择合适的模型。

创建LLM和ChatModel对象

考虑到学习方便,我们使用百度的千帆大模型,也就是平时说的文心一言。以前百度单独提供了一个Python包,现在已经整合到langchain_community包里。安装以下包准备环境:

pip install langchain
pip install langchain-core
pip install langchain-community
pip install qianfan
# 试
### 关于 LangChain入门教程 #### 了解 LangChain 基本概念核心功能 LangChain 是一种用于构建语言模型应用的强大框架,旨在简化开发者创建复杂自然语言处理系统的流程。该框架不仅提供了多种预训练的大规模语言模型(LLMs),还支持定制化的提示模板(Prompt Templates)、代理(Agents)、记忆(Memory)、索引(Indexes)以及链条(Chains)。这些特性使得开发人员能够更灵活地设计对话系统其他基于文本的应用程序[^1]。 #### 组件详解 - **Models**: 支持不同种类的语言模型,如 ChatGPT、ChatGLM T5 等。 - **Prompts**: 提供管理自定义提示的功能,有助于优化与 LLMs 的交互效果。 - **Agents**: 负责决策并执行特定任务,允许大型语言模型访问外部工具服务。 - **Memory**: 记录会话历史记录,保持上下文连贯性。 - **Indexes**: 对文档进行结构化处理,便于后续查询操作。 - **Chains**: 定义了一系列组件之间的调用顺序,形成完整的业务逻辑流[^4]。 #### 实际应用场景展示——简单问答系统 为了更好地理解如何利用 LangChain 创建实际项目,在此提供了一个简易版的问答系统实例: ```python from langchain import LangChain, PromptTemplate, LLMMemory, SimpleIndexCreator, AgentExecutor import json # 加载配置文件中的参数设置 with open('config.json', 'r') as f: config = json.load(f) # 初始化内存对象来存储聊天记录 memory = LLMMemory() # 设置索引来加速检索过程 index_creator = SimpleIndexCreator() indexes = index_creator.create_indexes(config['documents']) # 配置提示模板以指导模型生成合适的回复 prompt_template = PromptTemplate( input_variables=["history", "input"], template="Based on the following conversation history:\n{history}\nThe user asks: {input}" ) # 构造Agent执行器来进行具体的操作 agent_executor = AgentExecutor.from_llm_and_tools(llm=config['llm'], tools=[...], memory=memory) while True: question = input("Ask a question:") # 获取当前对话的历史作为背景信息的一部分 context = agent_executor.memory.get_context(inputs={"question": question}) # 将问题传递给Agent执行器获取答案 response = agent_executor.run(prompt=prompt_template.format(history=context["history"], input=question)) print(response) ``` 这段代码片段展示了如何结合多个 LangChain 组件建立一个可以持续互动的基础架构,并通过循环读取用户的输入来维持整个交流的过程[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值