POJ 3167 Cow Patterns (KMP + 树状数组)

本文介绍了一种改进的KMP算法实现方法,通过引入特定的匹配规则,利用Lee数组和Less数组来判断主串中是否包含与模式串相同大小关系的子串。该方法在匹配过程中优化了效率,并提供了详细的代码实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:在长度为n的主串中,用长度为k的模式串匹配,找出所有匹配的起始位置。匹配机制不是相等,而是找出的子串满足与模式串相同的大小关系。

例如样例:N:5 6 2 10 10 7 3 2 9    K:1 4 4 3 2 1。找出的子串为: 2 10 10 7 3 2,满足模式串中的任意i , j的大小关系。


现在需要一种判别方式代替普通的相等判别,就能变成kmp做法了。

用lee[i] 保存在 i 结点之前(包括i结点),小于等于val [i] 的个数

les [i] 保存在 i 结点之前(包括i结点),小于val [i] 的个数

得出的结论是:如果lee[i] == lee[j] && les[i] == les[j] 成立,则说明第i个位置和第j 个位置匹配,否则跳转next [j]


#include <iostream>
#include <algorithm>
#include <cmath>
#include<functional>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <climits>//形如INT_MAX一类的
#define MAX 100005
#define INF 0x7FFFFFFF
using namespace std;

int n,k,s;
int c[33],a[MAX],b[31111];
int next[MAX];
int lee[MAX],les[MAX];
int ans , pos[MAX];

void init() {
    ans = 0;
    memset(c,0,sizeof(c));
    memset(lee,0,sizeof(lee));
    memset(les,0,sizeof(les));
    memset(next,0,sizeof(next));
}

int lowbit(int x) {
    return x & (-x);
}

void update(int x,int va) {
    while(x <= s) {
        c[x] += va;
        x += lowbit(x);
    }
}

int query(int x) {
    int sum = 0;
    while(x > 0) {
        sum += c[x];
        x -= lowbit(x);
    }
    return sum;
}

void getnext() {
    memset(c,0,sizeof(c));
    int i = 1, j = 0;
    while(i <= k) {
        if(j == 0 || (query(b[i] - 1) == les[j] && query(b[i]) == lee[j])) { //匹配条件
            i ++;
            j ++;
            next[i] = j;
            if(i <= k) update(b[i],1); //满足匹配后加入
        } else {
            for(int l=i-j+1; l<=i-next[j]; l++) update(b[l],-1); //不满足匹配,删去这一轮加入的
            j = next[j];
        }
    }
}

void newkmp() {
    memset(c,0,sizeof(c));
    int i = 1, j = 1;
    update(a[1],1);
    while(i <= n) {
        if(j == 0 || (query(a[i] - 1) == les[j] && query(a[i]) == lee[j])) {
            i ++;
            j ++;
            if(i <= n) update(a[i],1);
        } else {
            for(int l=i-j+1; l<=i-next[j]; l++) update(a[l],-1);
            j = next[j];
        }
        if(j > k) { //要找出所有的起始位置,所以next[k] == 1;
            for(int l=i-j+1; l<=i-next[j]; l++) update(a[l],-1);
            j = next[j];
            pos[ans++] = i - k;
        }
    }
}

//void test() {
//    for(int i=1; i<=k; i++) printf("next : %d %d\n",i,next[i]);
//}

int main() {
    while(scanf("%d%d%d",&n,&k,&s) != EOF) {
        init();
        for(int i=1; i<=n; i++) scanf("%d",&a[i]);
        for(int i=1; i<=k; i++) scanf("%d",&b[i]);
        for(int i=1; i<=k; i++) {
            update(b[i],1);
            lee[i] = query(b[i]);
            les[i] = query(b[i] - 1);
        }
        getnext();
        //test();
        newkmp();
        printf("%d\n",ans);
        for(int i=0; i<ans; i++) printf("%d\n",pos[i]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值