完全背包问题基础知识及两道经典例题

本文详细介绍了完全背包问题的概念及其与01背包问题的区别,并通过两个具体的编程实例——零钱兑换2与组合总和4,展示了如何使用动态规划解决这类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。

它的大体步骤和01背包相同,有兴趣可以去我的博客背包问题之01背包
了解
这里介绍下不一样的地方,因为它的物品可以拿无数件,所以在遍历顺序这里不同
先来回顾一下01背包的遍历,为什么是这个顺序,内外能不能换,遍历容量为什么要从大到小我也在前面解释过。

for(int i = 0; i < weight.length(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

完全背包的物品可以重复放入,所以它的容量是从小到大的

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = weight[i]; j < bagWeight ; j++) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

完全背包的遍历顺序则要根据具体情况具体分析,纯完全背包对于一维dp来说无论谁先遍历都是可以的,因为下标j之前的dp[j]都是经过计算得来的。
零钱兑换2

class Solution {
    public int change(int amount, int[] coins) {
        //dp数组定义,首先物品是不同面额的硬币,背包是总金额,dp[j]为总金额为j时不同的硬币组合数
        //这道题不是一道纯完全背包问题,它不是要凑成总金额,而是要求凑成总金额的组合数的个数,
        //递推公式:dp[j] += dp[j - coins[i]];这里的递推公式我之前的博客有写过
        //初始化:dp[0] = 1,不然累加全是0;
        //遍历顺序,先遍历物品,再遍历背包容量,不然算的是排列数
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for(int i = 0;i < coins.length;i++) {
            for(int j = coins[i];j <= amount;j++) {
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
}

组合总和4

class Solution {
    public int combinationSum4(int[] nums, int target) {
        //这是一道求组合个数的动规题
        //dp定义dp[j] 为凑成target j的元素组合的个数
        //nums里的数可以取无数个,所以是完全背包
        //递推公式:dp[j] += dp[j - nums[i]];
        //初始化:dp[0] = 1;
        //遍历顺序:因为排列顺序不同被当作不同组合,所以是求排列数,所以背包容量放在外面遍历
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for(int j = 0;j <= target;j++) {
            for(int i = 0;i < nums.length;i++) {
                if(j - nums[i] >= 0) {
                    dp[j] += dp[j - nums[i]];
                }
            }
        }
        return dp[target];
    }
}

这两道的区别就是题目要求是组合还是排列数,物品循环放在外面,每个容量的dp只会考虑到该位置的物品在后面的情况,而容量在外面,每个dp有哪几个组成都要考虑一遍,所以是排列数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值