定义
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
它的大体步骤和01背包相同,有兴趣可以去我的博客背包问题之01背包
了解
这里介绍下不一样的地方,因为它的物品可以拿无数件,所以在遍历顺序这里不同
先来回顾一下01背包的遍历,为什么是这个顺序,内外能不能换,遍历容量为什么要从大到小我也在前面解释过。
for(int i = 0; i < weight.length(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
完全背包的物品可以重复放入,所以它的容量是从小到大的
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j < bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
完全背包的遍历顺序则要根据具体情况具体分析,纯完全背包对于一维dp来说无论谁先遍历都是可以的,因为下标j之前的dp[j]都是经过计算得来的。
零钱兑换2
class Solution {
public int change(int amount, int[] coins) {
//dp数组定义,首先物品是不同面额的硬币,背包是总金额,dp[j]为总金额为j时不同的硬币组合数
//这道题不是一道纯完全背包问题,它不是要凑成总金额,而是要求凑成总金额的组合数的个数,
//递推公式:dp[j] += dp[j - coins[i]];这里的递推公式我之前的博客有写过
//初始化:dp[0] = 1,不然累加全是0;
//遍历顺序,先遍历物品,再遍历背包容量,不然算的是排列数
int[] dp = new int[amount + 1];
dp[0] = 1;
for(int i = 0;i < coins.length;i++) {
for(int j = coins[i];j <= amount;j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
}
class Solution {
public int combinationSum4(int[] nums, int target) {
//这是一道求组合个数的动规题
//dp定义dp[j] 为凑成target j的元素组合的个数
//nums里的数可以取无数个,所以是完全背包
//递推公式:dp[j] += dp[j - nums[i]];
//初始化:dp[0] = 1;
//遍历顺序:因为排列顺序不同被当作不同组合,所以是求排列数,所以背包容量放在外面遍历
int[] dp = new int[target + 1];
dp[0] = 1;
for(int j = 0;j <= target;j++) {
for(int i = 0;i < nums.length;i++) {
if(j - nums[i] >= 0) {
dp[j] += dp[j - nums[i]];
}
}
}
return dp[target];
}
}
这两道的区别就是题目要求是组合还是排列数,物品循环放在外面,每个容量的dp只会考虑到该位置的物品在后面的情况,而容量在外面,每个dp有哪几个组成都要考虑一遍,所以是排列数。