flink 分组聚合算子

1  reduce对于非窗口

link有两种reduce的方式,一种是正常的reduce,一种是windows窗口的reduce,本文主要介绍两种reduce方式的区别
1、正常的reduce
1.1 代码示例

val resultResult = inputstream
      .keyBy(_.sensor_id)
      .reduce(new ReduceFunction[SensorReading] {
        override def reduce(t: SensorReading, t1: SensorReading): SensorReading = {
          new SensorReading(t.sensor_id,t.timestamp,t.temperature + t1.temperature)
        }
      })

从代码中可以看到reduce是跟在keyBy后面的,这时作用于reduce的类是一个KeyStream的类,reduce会保存之前计算的结果,然后和新的数据进行累加,所以每次输出的都是历史所有的数据的总和。 
在上面的override def reduce(t: SensorReading, t1: SensorReading)中,第一个参数t是保存的历史数据,t1是最新的数据。

注:keyBy只是按KEY区分数据到不同的task处理,并不一定是将数据分组发送。

2、window的reduce
2.1 代码示例

 val resultResult = inputstream
      .assignTimestampsAndWatermarks(new SensorReadingWatermark())
      .keyBy(_.sensor_id)
      .timeWindow(Time.seconds(5))
      .trigger(new SensorTrigger())
      .reduce(new ReduceFunction[SensorReading] {
        override def reduce(t: SensorReading, t1: SensorReading): SensorReading = {
          new SensorReading(t.sensor_id,t.timestamp,t.temperature + t1.temperature)
        }
      })

在该示例中,reduce是跟在窗口算子的后面的,这时作用于reduce的类是一个WindowedStream。
既然是针对WindowedStream的操作,很显然,每次reduce的操作都是针对同一个窗口内同一个key的数据进行计算,每个窗口计算完成后,才会把数据发出来。


原文链接:https://blog.csdn.net/chenzhiang1/article/details/114401344

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值