hadoop保姆级部署教程

本文提供了一步一步的Hadoop部署教程,包括安装、配置环境变量、运行mapreduce示例程序grep和wordcount。通过实例展示了如何统计文件中特定单词出现的次数,是初学者的保姆级教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我是放在opt/目录下的

 

Hadoop安装包介绍

第1步:从宿主机中将hadoop的安装包上传到虚拟机上

第2步:解压安装包,并重命名

第3步:配置Hadoop环境变量,并source生效

 

第4步:测试

 

 

测试2: 运行mapreduce示例程序grep

目的→
  统计源目录下所有资源(每个xml文件)中的内容以dfs开头的行数

步骤:
    ①准备测试的数据:
    [root@master ~]# cd /opt/hadoop/etc/hadoop/
    [root@master hadoop]# mkdir ~/input
    [root@master hadoop]# cp *.xml ~/input
    [root@master hadoop]# ll ~/input
    总用量 48
    -rw-r--r-- 1 root root 4436 9月  21 14:23 capacity-scheduler.xml
    -rw-r--r-- 1 root root  774 9月  21 14:23 core-site.xml
    -rw-r--r-- 1 root root 9683 9月  21 14:23 hadoop-policy.xml
    -rw-r--r-- 1 root root  775 9月  21 14:23 hdfs-site.xml
    -rw-r--r-- 1 root root  620 9月  21 14:23 httpfs-site.xml
    -rw-r--r-- 1 root root 3518 9月  21 14:23 kms-acls.xml
    -rw-r--r-- 1 root root 5540 9月  21 14:23 kms-site.xml
    -rw-r--r-- 1 root root  690 9月  21 14:23 yarn-site.xml

    ②调用内置的示例程序(mapreduce):
    [root@master input]# hadoop jar /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.6.jar grep ~/input ~/output 'dfs[a-z.]'
    20/09/21 14:30:41 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
    20/09/21 14:30:41 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
    20/09/21 14:30:41 INFO input.FileInputFormat: Total input paths to process : 8
    20/09/21 14:30:41 INFO mapreduce.JobSubmitter: number of splits:8
    20/09/21 14:30:41 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1843484991_0001
    20/09/21 14:30:41 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
    20/09/21 14:30:41 INFO mapreduce.Job: Running job: job_local1843484991_0001
    20/09/21 14:30:41 INFO mapred.LocalJobRunner: OutputCommitter set in config null
    20/09/21 14:30:41 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
    20/09/21 14:30:41 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
    20/09/21 14:30:41 INFO mapred.LocalJobRunner: Waiting for map tasks
    20/09/21 14:30:41 INFO mapred.LocalJobRunner: Starting task: attempt_local1843484991_0001_m_000000_0
    20/09/21 14:30:41 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
    20/09/21 14:30:41 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
    20/09/21 14:30:41 INFO mapred.MapTask: Processing split: file:/root/input/hadoop-policy.xml:0+9683
    20/09/21 14:30:41 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
    20/09/21 14:30:41 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
    20/09/21 14:30:41 INFO mapred.MapTask: soft limit at 83886080
    20/09/21 14:30:41 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
    20/09/21 14:30:41 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
    20/09/21 14:30:41 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
    20/09/21 14:30:41 INFO mapred.LocalJobRunner: 
    20/09/21 14:30:41 INFO mapred.MapTask: Starting flush of map output
    20/09/21 14:30:41 INFO mapred.MapTask: Spilling map output
    20/09/21 14:30:41 INFO mapred.MapTask: bufstart = 0; bufend = 13; bufvoid = 104857600
    20/09/21 14:30:41 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214396(104857584); length = 1/6553600
    20/09/21 14:30:42 INFO mapred.MapTask: Finished spill 0
    20/09/21 14:30:42 INFO mapred.Task: Task:attempt_local1843484991_0001_m_000000_0 is done. And is in the process of committing
    20/09/21 14:30:42 INFO mapred.LocalJobRunner: map
    20/09/21 14:30:42 INFO mapred.Task: Task 'attempt_local1843484991_0001_m_000000_0' done.
    20/09/21 14:30:42 INFO mapred.Task: Final Counters for attempt_local1843484991_0001_m_000000_0: Counters: 18
            File System Counters
                    FILE: Number of bytes read=306465
                    FILE: Number of bytes written=590739
                    FILE: Number of read operations=0
                    FILE: Number of large read operations=0
                    FILE: Number of write operations=0
            Map-Reduce Framework
                    Map input records=226
                    Map output records=1
                    Map output bytes=13
                    Map output materialized bytes=21
                    Input split bytes=99
                    Combine input records=1
                    Combine output records=1
                    Spilled Records=1
                    Failed Shuffles=0
                    Merged Map outputs=0
                    GC time elapsed (ms)=0
             

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值