一维卷积

现在大部分的深度学习教程中都把卷积定义为图像矩阵和卷积核的按位点乘。实际上,这种操作应该是互相关(cross-correlation),而卷积需要把卷积核顺时针旋转180度然后再做点乘。

一维卷积分为:full卷积、same卷积和valid卷积

以一个长度为5的一维张量I和长度为3的一维张量k(卷积核)为例,介绍其过程。

一维full卷积

Full卷积的计算过程是:K沿着I顺序移动,每移动到一个固定位置,对应位置的值相乘再求和,计算过程如下:

将得到的值依次存入一维张量Cfull,该张量就是I和卷积核K的full卷积结果,其中K卷积核或者滤波器或者卷积掩码,卷积符号用符号*表示,记Cfull=I*K

一维same卷积

卷积核K都有一个锚点,然后将锚点顺序移动到张量I的每一个位置处,对应位置相乘再求和,计算过程如下:

假设卷积核的长度为FL,如果FL为奇数,锚点位置在(FL-1)/2处;如果FL为偶数,锚点位置在(FL-2)/2处。

一维Valid卷积

从full卷积的计算过程可知,如果K靠近I,就会有部分延伸到I之外,valid卷积只考虑I能完全覆盖K的情况,即K在I的内部移动的情况,计算过程如下:

三种卷积类型的关系

具备深度的一维卷积

比如x是一个长度为3,深度为3的张量,其same卷积过程如下,卷积核K的锚点在张量x范围内依次移动,输入张量的深度和卷积核的深度是相等的。

具备深度的张量与多个卷积核的卷积

上面介绍了一个张量和一个卷积核进行卷积。他们的深度相等才能进行卷积,下面介绍一个张量与多个卷积核的卷积。同一个张量与多个卷积核的卷积本质上是该张量分别与每一个卷积核卷积,然后将每一个卷积结果在深度方向上连接起来。

举例:以长度为3、深度为3的输入张量与2个长度为2、深度为3的卷积核卷积为例,过程如下:

参考资料

《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

### 一维卷积神经网络原理 在一维卷积神经网络(1D CNN)中,卷积操作主要应用于处理时间序列数据或其他形式的一维输入向量。这种类型的CNN特别适用于语音识别、自然语言处理等领域。 对于给定的时间序列$x(t)$,假设有一个长度为$k$的滤波器$f(i), i=0,\ldots,k-1$,那么该位置$t$处经过此滤波器后的响应可以表示为: $$y(t)=\sum_{i=0}^{k-1}{f(i)x(t-i)} \tag{1}\label{eq:convolution_operation_1d}$$ 上述公式描述了一维离散卷积运算过程[^1]。当这个基本单元被堆叠成多层架构时,则构成了完整的1D-CNN框架。每一层都会提取不同尺度下的局部模式,并通过激活函数传递这些信息至下一层直至最终分类或回归输出。 值得注意的是,在实际应用过程中,通常还会加入池化(pooling)机制来减少特征维度并增强模型泛化能力;同时也会采用批量归一化(batch normalization)等技术手段防止梯度消失现象发生,从而提高训练效率与效果。 ### 分形卷积的概念及其应用场景 分形理论提供了一个强有力的工具集用来刻画自然界中存在的复杂几何形态以及动力学行为。关联维数作为其中一个重要的量化指标,能够有效地衡量系统内部结构随尺度变化所表现出的不同层次上的统计规律性[^3]。 基于这一背景,研究者们探索出了所谓的“分形卷积”,它试图模仿人类视觉皮层细胞的感受野特性——即具有多重分辨率和平移不变性的特点。具体而言,这类算法允许在同一张图片上施加大小各异但形状相似的小窗口来进行扫描检测工作,进而捕捉到更加丰富的纹理细节和边缘轮廓信息。 此外,由于许多物理和社会科学领域内的真实世界问题往往具备某种意义上的自仿射属性,因此利用分形卷积可以帮助构建更为精准的数据驱动预测模型。例如,在医学影像诊断方面,这种方法已被证实能显著改善病灶区域定位精度;而在金融风险评估场景下同样有着广阔的应用前景。 ```python import numpy as np from scipy.signal import convolve def one_dimensional_convolution(signal, kernel): """实现简单的一维卷积""" result = convolve(signal, kernel, mode='same') return result signal_example = np.array([1., 2., 3., 4., 5.]) kernel_example = np.array([-1., 0., 1.]) output_signal = one_dimensional_convolution(signal_example, kernel_example) print(output_signal) ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值