leetcode654 最大二叉树
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
if not nums:
return None
maxValue = max(nums)
node = TreeNode(maxValue)
maxIndex = nums.index(maxValue)
node.left = self.constructMaximumBinaryTree(nums[:maxIndex])
node.right = self.constructMaximumBinaryTree(nums[maxIndex + 1:])
return node
leetcode617 合并二叉树
觉得二叉树的学习过程中递归很好使,随着题目的增加,对递归理解更加深刻
class Solution:
def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
if not root1:
return root2
if not root2:
return root1
root1.val += root2.val
root1.left = self.mergeTrees(root1.left, root2.left)
root1.right = self.mergeTrees(root1.right, root2.right)
return root1
leetcode700 二叉搜索树中的搜索
递归法:
class Solution:
def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if not root or root.val == val:
return root
if root.val > val:
return self.searchBST(root.left, val)
if root.val < val:
return self.searchBST(root.right, val)
迭代法:
class Solution:
def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
while root:
if val < root.val: root = root.left
elif val > root.val: root = root.right
else:return root
return None
leetcode98 验证二叉搜索树
先通过中序遍历将二叉树转为有序数组,判断数组是否有序就行
class Solution:
def __init__(self):
self.vec = []
# 中序遍历
def traversal(self, root):
if not root:
return
self.traversal(root.left) # 左
self.vec.append(root.val) # 中
self.traversal(root.right) # 右
def isValidBST(self, root: Optional[TreeNode]) -> bool:
# self.vec = []
self.traversal(root)
for i in range(1, len(self.vec)):
if self.vec[i] <= self.vec[i - 1]:
return False
return True
设置最小值
class Solution:
def __init__(self):
self.maxVal = float('-inf')
def isValidBST(self, root: TreeNode):
if not root:
return True
left = self.isValidBST(root.left)
if self.maxVal < root.val:
self.maxVal = root.val
else:
return False
right = self.isValidBST(root.right)
return left and right
迭代法
在此题中,由于深度遍历方法的遗忘废了些功夫,需要常复习三种迭代遍历方式
class Solution:
def isValidBST(self, root):
stack = []
cur = root
pre = None
while cur is not None or len(stack) > 0:
if cur is not None:
stack.append(cur)
cur = cur.left
else:
cur = stack.pop()
if pre is not None and cur.val <= pre.val:
return False
pre = cur
cur = cur.right
return True