leetcode 235 二叉搜索树的最近公共祖先
本题的关键在于如何利用二叉搜索树的性质简化普通二叉树搜索最近公共祖先的过程,如果
cur.val > p.val && cur.val < q.val 或者 cur.val < p.val && cur.val > q.val,即cur.val在区间[p, q]中。
递归法:
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if not root:
return None
if root.val > p.val and root.val > q.val:
left = self.lowestCommonAncestor(root.left, p, q)
if left:
return left
if root.val < p.val and root.val < q.val:
right = self.lowestCommonAncestor(root.right, p, q)
if right:
return right
return root
迭代法:
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
while root:
if root.val > p.val and root.val > q.val:
root = root.left
elif root.val < p.val and root.val < q.val:
root = root.right
else:
return root
return None
迭代法在这题显得格外通俗易懂
leetcode701 二叉搜索树中的插入操作
本题的重点在于理解二叉搜索树的插入操作,并不需要改变树的结构,在插入操作时,只需要在合适的空节点插入即可
递归法:
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
parent = TreeNode(0)
if not root:
return TreeNode(val)
self.traversal(root, val)
return root
def traversal(self, cur, val):
if not cur:
cur = TreeNode(val)
if val > self.parent.val:
self.parent.right = cur
else:
self.parent.left = cur
return
self.parent = cur
if cur.val > val:
self.traversal(cur.left, val)
if cur.val < val:
self.traversal(cur.right, val)
leetcode450 删除二叉树中的节点
相比于增加节点,删除二叉树的节点更为复杂,需要考虑的情况比较多,左右为空、左空右不空、左不空右空、左右都不空还有没找到删除的节点。其中需要注意的是左右都不用的情况比较复杂。
递归法:
class Solution:
def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]:
if not root:
return root
if root.val == key:
if root.left is None and root.right is None:
return None
if root.left and root.right is None:
return root.left
if root.right and root.left is None:
return root.right
# 最难理解的部分
if root.right and root.left:
cur = root.right
while cur.left:
cur = cur.left
cur.left = root.left
return root.right
if root.val > key:
root.left = self.deleteNode(root.left, key)
if root.val < key:
root.right = self.deleteNode(root.right, key)
return root