论文笔记 Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams (CVPR2018)

本文介绍了一种结合动态图生成网络(DGGN)和记忆网络的创新方法,即动态邻接张量记忆(DATM),用于图表元素间关系的理解与生成。DATM通过三维矩阵存储节点间关系信息,不仅支持节点间的消息传递,还能在线构建图的边,增强了图生成与推理的能力。该方法在检测与图生成的多任务学习中,通过分类损失、位置回归损失和关系分类损失进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Related works

1. visual relationships

2. Neural networks on a graph

3. Memory augmented neural network

文章方法上值得关注的地方

This paper propose a dynamic adjacency tensor memory (DATM) for the DGGN to store information about the relationships among the elements in a diagram.
将graph的边与动态的memory network结合在一起,蛮创新的。基础框架仍然是DGGN,但结合进memory network不仅能在节点之间传递消息(message-passing between nodes) ,而且能在线地构建图的边(build the edges of a graph online),为图的生成和推理提供了很大的潜力。

在这里插入图片描述
dynamic adjacency tensor memory(DATM)其实是一个n∗n∗(m+1)n*n*(m+1)nn(m+1)的三维矩阵,该三维矩阵由两部分拼接而成,一部分是邻接矩阵 A∈Rn∗nA\in R^{n*n}ARnn,另一部分是对应的隐单元H,其(i,j)(i,j)(i,j)元素h(i,j)h_{(i,j)}h(i,j)是GRU的m维隐向量,与节点oio_ioiojo_joj之间的连接有关。邻接矩阵A表示有向图中n个节点之间的连接状态。对于每个GRU 单元的输入就是ftf_tftft(l),t=1,2,...,n2f_t^{(l)}, t = 1,2,...,n^2ft(l),t=1,2,...,n2, ftf_tft表示两个object特征之间的拼接。
在这里插入图片描述
在这里插入图片描述
对于Retrieval而言,就是用边的存在概率aaa加权了oio_ioiojo_joj的相邻向量hhh, 并且添加全局特征f(g)f^{(g)}f(g)以反映图表的全局形状, 形成ttt时刻的GRU隐层向量hth_tht
在这里插入图片描述
对于Update而言,其中memory里面的一个cell Di,jD_{i,j}Di,j是由一个GRU cell的输出ata_tat与隐层单元hth_tht拼接而成。
在这里插入图片描述
为了得到隐藏状态hth_tht,使用了向量ht−1h_{t−1}ht1ftf_tft作为标准GRU的先前隐藏状态和输入向量。
在这里插入图片描述
这是包含detection与graph generation的多任务学习,因此其loss包含三项,目标检测分支的分类损失LcL_cLc和位置回归损失LlL_lLl,图生成网络的关系分类损失LrL_rLr

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猴猴猪猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值