推荐系统2--隐语义模型(LFM)和矩阵分解(MF)

该博客探讨了推荐系统中解决矩阵稀疏性问题的LFM(隐语义模型)和MF(矩阵分解)方法。LFM通过寻找用户与商品之间的隐含元素连接来建模,而MF将共现矩阵分解为用户和物品的隐向量矩阵。Funk-SVD作为矩阵分解的一种实现,利用神经网络优化参数,并引入偏置项以减少系统偏差。SVD++则考虑了用户历史行为对评分预测的影响,增强预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐系统2--隐语义模型(LFM)和矩阵分解(MF)_Evey_zhang的博客-CSDN博客_推荐系统mf模型

这里主要是因为协同过滤存在一些问题,矩阵稀疏,难以评估相似性

1.lfm隐语义模型

找到隐含的匀速连接起用户与商品,用户会对不同的元素感兴趣,不同的商品包含的这些元素权重也不同,元素向量是要找的隐含变量

2.矩阵分解

共现矩阵(m*n)分解成用户矩阵(m*k)*物品矩阵(k*n)

k是隐含变量的维度,k的大小决定了隐含向量表达能力的强弱,越大,表达的信息越具体,挖掘到的用户的兴趣,物品的特征信息也越多。

3.矩阵分解的方法

evd(特征分解)要求矩阵是方阵

svd(奇异值分解)要求矩阵稠密,没空缺值

Funk-SVD(lfm)利用神经网络求解参数的方法 求解隐变量(r=p_u*q_i)

做法:初始化矩阵,已有的用户对物品的评分是label,用户,物品隐向量是特征,两个隐向量的乘积是预测值,最小化sse对用户矩阵,误差反向传播,更新两个隐向量,对物品矩阵进行填充,填充完毕就可以计算用户对未评分物品的评分了

rsvd加入了正则项(r=miu+b_u+b_i+p_u*q_i)

有些物品有些属性与用户没有关系,用户某些属性与商品没有关系,比如某些人偏悲观对所有的物品都会有低打分的倾向,这是与物品本身无关的,加入偏置消除评分系统本身的偏差

SVD++

前面的LFM模型没有显示的考虑用户的历史行为对用户评分预测的影响。但是可以知道的是,用户的历史行为记录,对当下物品的预测也可以作为一个参考

前面的矩阵分解当前的共现矩阵,没考虑到历史商品的评分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值