推荐系统3--FM和FFM

本文介绍了推荐系统中FM和FFM模型的发展,重点讨论了它们如何解决LR的局限,如数据稀疏性和特征交叉问题。FM通过矩阵分解处理二阶特征,而FFM则区分域特征学习独立隐向量,提升表达能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐系统3--FM和FFM_Evey_zhang的博客-CSDN博客_推荐系统fm

推荐系统的发展,由最初的协同过滤到矩阵分解再到机器学习模型gbdt+lr(gbdt用来做特征筛选,lr处理稀疏 特征,这个是推荐系统特征工程化的开始)

lr只是对特征进行加权组合,不能特征交叉生成组合特征,表达能力受限

poly2,fm与fmm的出现为了解决lr无法做特征交叉的问题(特征交叉一个经典的例子是将年龄和性别进行组合,特定年龄段的女性对于化妆品的喜好会有不同)

poly2在lr的基础上加了二阶特征交叉项

poly2的问题,数据稀疏性,交叉特征乘积为零,对应的权重在训练时无法收敛,参数量过大

fm

把poly2交叉特征的系数矩阵参考矩阵分解的方式进行处理,将w_ij写成隐向量相乘的形式,fm的参数量由n^2减少到了kn,包含xi的项都可以用来学习vi,缓解了数据稀疏的影响,

两个优点降低了参数量,参数更容易学习,受数据稀疏影响较小

ffm

把样本特征按所属域进行区分,每一个特征都和不同域的特征学习隐向量,体现不同域特征的差异项,表达能力更强,降低一侧隐向量的维度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值