
AI专栏
文章平均质量分 91
探索人工智能前沿,深度解析 AI 技术、应用与趋势。从基础概念到行业实践,助您洞察智能未来,把握技术浪点,赋能创新
葡萄城技术团队
葡萄城是专业的软件开发技术和低代码平台提供商,聚焦软件开发技术,以“赋能开发者”为使命,致力于通过表格控件、低代码和BI等各类软件开发工具和服务,一站式满足开发者需求,帮助企业提升开发效率并创新开发模式。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
用 LangGraph + MCP Server 打造 SpreadJS 智能助手:让 AI 真正懂你的表格需求
本文探讨了如何利用AI Agent技术提升SpreadJS开发效率。针对SpreadJS API数量庞大、调用复杂的问题,作者提出构建一个基于MCP Server和LangGraph的智能助手系统。该系统通过以下方式实现:1)建立MCP Server提供标准化的文档查询服务;2)使用LangGraph框架构建具备自主决策能力的Agent;3)实现工具定义与执行的分离架构。该方案能帮助开发者通过自然语言指令快速生成准确的SpreadJS代码,有效解决现有LLM在专业领域存在幻觉的问题。原创 2025-08-25 09:44:42 · 1500 阅读 · 0 评论 -
AI 工具排行榜:GitHub Copilot 并非开发者首选
GitHub Copilot虽在代码补全方面领先,但国内开发者更青睐本地化AI工具。最新调查显示,Tabnine、DeepCode及国产AI助手凭借中文支持、性价比和生态整合优势正快速崛起。开发者选择工具时需考虑实际需求、试用体验及成本,AI编程助手市场正呈现多元化趋势。原创 2025-08-21 09:37:52 · 890 阅读 · 0 评论 -
微软 AI 商业智能体将如何颠覆 SaaS?2030 年或成变革元年
摘要:微软预测到2030年AI商业智能体可能颠覆传统SaaS模式。这些智能体具备跨平台整合、自主决策等优势,能打破数据孤岛、降低成本。对国内开发者而言,需关注AI开发框架、低代码平台、数据合规及本地生态整合。未来更可能是;AI+SaaS;的融合进化,开发者需把握技术趋势,开发符合本土需求的智能解决方案。原创 2025-08-21 09:12:10 · 1006 阅读 · 0 评论 -
从AI调用到AI智能体:全面解析三种AI应用的技术架构
摘要 AI应用开发正经历从工具到自主决策者的范式变革,呈现出三种主要模式:AI调用、AI工作流和AI智能体。AI调用模式适用于原子化任务,依赖提示词工程实现单次响应;AI工作流通过预定义流程将AI节点与外部系统集成;AI智能体则具备自主决策和学习能力。每种模式对应不同技术架构,需结合业务场景选择合适方案。架构设计需考虑模块化、扩展性和成本控制,以充分发挥AI价值。原创 2025-08-19 08:33:17 · 880 阅读 · 0 评论 -
OpenAI API 系列文章1——生成图像
随着人工智能技术的快速发展,OpenAI API 提供了强大的图像生成和处理能力,使开发者能够构建多模态应用程序。本文是OpenAI API系列的第一篇,将重点介绍如何使用OpenAI API生成图像,包括相关API端点、模型选择、代码实现以及成本计算等内容。通过本文,您将了解如何利用OpenAI的最新图像生成技术,为您的应用程序添加视觉内容生成功能。原创 2025-08-15 09:18:57 · 657 阅读 · 0 评论 -
让LLM做低代码考试谁会胜出
葡萄城AI团队对Claude-4、GLM-4.5和Qwen3三大语言模型在"活字格"低代码平台认证考试中的表现进行了测评。结果显示,结合知识库检索(RAG)和Agent自动规划检索技术能显著提升模型表现,其中Agent模式效果最佳,Claude-4在高级科目中取得74.12%的正确率。测评也暴露出AI在实践应用和知识更新方面的局限性,表明其更适合作为知识助手而非完全替代专家。该研究为专业领域AI应用提供了技术参考,相关开源项目已在GitHub发布。原创 2025-08-13 08:54:05 · 1181 阅读 · 0 评论 -
人工智能编码工具:冒名顶替综合症的双刃剑
AI编码工具对开发者冒名顶替综合症的双重影响 AI编码工具如Copilot在软件开发中既缓解又加剧了冒名顶替综合症。缓解机制包括降低入门门槛、提供即时反馈、鼓励安全实验和保障技能未来;但同时也可能通过制造专业知识幻觉、促成不公平比较和导致关键环节缺失而加深自我怀疑。平衡使用的策略包括:将AI作为思考伙伴而非拐杖,预留非AI辅助学习时间,以及公开承认工具局限性。技术管理者需引导团队建立健康的使用模式,避免基于AI速度衡量开发绩效,而应关注代码质量和成长心态。原创 2025-08-12 10:54:58 · 514 阅读 · 0 评论 -
ChatGpt 5系列文章1——编码与智能体
OpenAI发布GPT-5,AI编程迈入新纪元。GPT-5在编码基准测试中创下多项纪录:SWE-bench得分74.9%,Aider多语言测试88%,错误率降低三分之一。其突破性能力包括深度代码理解、前端开发优化(70%任务优于前代)和智能体任务性能(工具调用准确率96.7%)。新API支持精细化响应控制(verbosity/reasoning参数)和自定义工具,提供三种版本(gpt-5/mini/nano)满足不同需求。CEO表示GPT-5已成为开发者的"真正协作伙伴",能发现深层漏洞原创 2025-08-12 09:06:31 · 960 阅读 · 0 评论 -
AI 能制造爆款,却写不出好文章
AI写作的困境与Transformer技术解析 文章通过对比测试发现AI生成的文章在比喻、象征和非线性叙事方面明显逊色于文学大师作品。作者从技术角度分析指出,当前主流的大语言模型(LLM)基于Transformer架构,其采样策略(如Top-k和温度参数)影响了文本质量。温度参数T通过指数函数调节词汇概率分布,T值越小输出越保守,T值越大则越多样。虽然这些技术手段能控制文本生成,但仍难以达到人类作家的文学深度和创意水平。文章揭示了AI写作在文学性方面的局限,以及技术优化方向。原创 2025-08-11 10:16:18 · 1490 阅读 · 0 评论 -
什么是上下文窗口
本文系统探讨了语言模型中的上下文窗口技术。上下文窗口作为模型的"工作记忆",决定了其处理文本的长度和复杂性。文章详细解析了标准上下文窗口的工作机制,包括令牌积累模式和固定容量限制;阐述了扩展思维模式下的特殊管理规则及自动剥离机制;分析了结合工具使用时上下文窗口的计算方法;并介绍了新版Claude模型的改进特性。研究表明,深入理解上下文窗口的运行原理对优化AI应用性能、设计高效对话流程具有重要意义。随着技术进步,上下文窗口管理将更加智能化,为自然语言处理带来更多可能性。原创 2025-08-08 09:05:01 · 817 阅读 · 0 评论 -
AI 技术发展简史
AI 技术发展简史原创 2025-05-14 09:46:10 · 1398 阅读 · 0 评论 -
AI智能体介绍与典型应用场景分析
AI智能体是具备感知、决策、执行和学习能力的软件系统,可自主完成任务。其核心组件包括感知模块(获取信息)、决策模块(AI分析)和执行模块(输出动作)。智能体主要分为任务型、交互型、生成型和自主决策型四类,可组合应用于复杂场景。虽然大模型提供基础能力,但企业仍需定制开发智能体以解决任务拆解、交互设计和系统协同三大难题。当前落地面临技术(准确性、可解释性)、数据(质量、合规)和业务(需求对接、组织适应)三重挑战。低代码平台通过可视化开发等方式,正成为降低智能体落地门槛的有效解决方案。原创 2025-06-03 10:28:04 · 1326 阅读 · 0 评论 -
判别式 AI 与生成式 AI
判别式 AI 与生成式 AI原创 2025-05-20 10:14:59 · 2026 阅读 · 0 评论 -
AI对低代码技术的影响
AI对低代码技术的影响原创 2025-05-28 09:44:50 · 1292 阅读 · 0 评论 -
AI智能体的技术架构与解决方案
在技术实现的视角看,智能体分为三层:交互层、智能决策层和系统连接层原创 2025-06-10 10:31:23 · 855 阅读 · 0 评论 -
AI的出现,是否能替代IT从业者?
AI技术正在重塑IT行业,但不会取代从业者。生成式AI本质上是通过概率重组而非真正创新来完成任务,与人类创造力有本质区别。实际项目中,AI主要承担基础性工作(如代码生成、文档编写),而开发者更专注于架构设计、业务逻辑等核心能力。未来IT从业者需要强化需求翻译、价值判断和突破性创新等能力,同时掌握提示工程和AI管理等新技能。AI与人将形成"创意-扩展-判断"的新型协作模式,推动行业进入更具创造力的发展阶段。原创 2025-07-08 09:38:50 · 825 阅读 · 0 评论 -
开发者指南:选对 AI 编程助手,效率翻倍还不添乱
技术团队分享AI编程助手选型指南,提出应根据开发者工作风格选择三种行为模式的工具:低干扰型适合专注工作,中度型提供智能建议,深度协作型适合复杂项目。指南建议从开发者类型、干扰承受度、学习偏好三个维度评估需求,并提供不同场景的匹配方案。测试阶段需关注心流状态、上下文连贯性等指标,最终选择应满足"存在感弱但效率提升"的标准。文章推荐GitHub Copilot、Cursor、Trae等工具,强调AI助手应成为"隐形翅膀"而非干扰源。原创 2025-07-11 09:28:34 · 748 阅读 · 0 评论 -
开源 AI:年轻开发人员是否处于领先地位?
开源AI与专有AI之争引发开发者群体关注。调查显示,82%的开发者有开源技术使用经验,但新人开发者认知度较低。开发者更偏爱开源项目维护(57%)而非专有AI贡献(37%)。年轻开发者对AI聊天机器人热情更高,而资深开发者对专有技术负面评价更多。66%开发者信任开源AI用于个人项目,比例高于专有AI(52%)。开源AI面临可发现性、透明度等挑战,86%受访者认为其符合公共利益。研究表明,开源AI正吸引不同代际开发者共同推动行业发展,但需解决社区建设等关键问题。原创 2025-07-28 15:29:02 · 1196 阅读 · 0 评论 -
.NET AI 模板
微软推出的.NET AI模板预览版为开发者提供了快速构建智能聊天应用的脚手架,包含Blazor Web界面、AI交互抽象库和向量数据处理组件。该模板支持本地与Azure集成,允许开发者与自定义数据交互,并提供了数据提取和UI定制功能。安装简单,兼容Windows、macOS和Linux平台,可无缝集成到Visual Studio和VS Code开发环境。通过示例代码展示了如何扩展功能,如添加天气查询工具。该模板显著降低了.NET开发者进入AI领域的门槛,支持从原型到生产的全流程开发,是AI应用开发的理想起点原创 2025-07-07 11:31:19 · 806 阅读 · 0 评论 -
AI 应用开发的陷阱:MCP 的致命问题
摘要: MCP架构通过集中式工具服务扩展大语言模型(LLM)能力,但存在核心缺陷:开发者失去对模型上下文的精确控制权。该模式将工具定义权交给Server开发者,导致Client应用面临工具变更不可控、上下文浪费、描述质量参差及安全风险等问题。虽然MCP在开放平台场景下(如AI聊天插件)展现出易扩展优势,但专业应用应保持工具定义自主权。技术选型需权衡控制力与灵活性,封闭系统推荐自主管理工具,开放生态则可考虑MCP的动态扩展性。(149字)原创 2025-07-25 08:37:07 · 992 阅读 · 0 评论 -
通过 .NET Aspire 使用本地 AI 模型
本文介绍了如何利用.NET Aspire框架结合Ollama在本地运行AI模型的开发流程。通过安装社区工具包,开发人员可以轻松配置Ollama服务器并添加所需模型,使用Microsoft.Extensions.AI抽象层实现与模型的交互。这种方案支持在本地开发阶段快速测试AI功能,并可通过简单的配置切换实现从本地到云端(如Azure OpenAI)的无缝迁移。文章详细展示了从环境搭建到实际应用集成的完整步骤,为.NET开发者提供了一条高效、灵活的AI应用开发路径。原创 2025-07-10 09:53:15 · 437 阅读 · 0 评论 -
你的AI智能体,5分钟就能动起来
摘要: 企业AI应用正从问答式升级为任务执行型,通过低代码平台(如活字格)可快速部署AI智能体。例如,仓库管理中,5分钟配置即可实现库存异常自动整理与推送,无需编码。AI智能体的核心价值在于串联业务流程(如自动分类邮件、动态采购),而“低代码+智能体”组合降低了落地门槛。建议企业无需等待完美方案,选择具体场景试用现有工具,快速验证价值——关键在于行动力,而非技术完备性。原创 2025-07-17 15:08:53 · 390 阅读 · 0 评论 -
回答准确率从60%飙至95%!AI知识库救命方案
本文提出了一种颠覆性的RAG知识库优化方案,通过存储"问答对"而非传统文档切片,显著提升AI回答准确率。文章分析了传统切片方案存在的版本管理混乱、知识点割裂等问题,详细介绍了问答对存储方案的技术优势:精准匹配、避免内容割裂、完美版本管理。同时分享了实践中的关键技术细节,包括图片附件处理、利用大模型生成问答对的成本优化技巧,以及问答对的保存结构设计。该方案采用Qdrant向量数据库+MySQL的混合架构,经实测可将回答准确率从60%提升至95%,为AI知识库落地提供了创新性解决方案。原创 2025-07-17 15:41:33 · 779 阅读 · 0 评论 -
Claude Code:AI编程的深度体验与实践
摘要:Claude Code深度体验:AI编程助手的效率革命 本文分享了作者对Claude Code这一AI编程助手的深度使用体验。通过与GitHub Copilot等工具的对比,展示了Claude Code在项目理解深度、自动化程度和本地化支持方面的优势。文章通过5个实际开发案例(包括大型项目改造、会议编码、Bug修复、开源项目改造和多任务并行开发),详细演示了Claude Code如何将开发效率提升3-5倍。最后总结了11个提高使用成功率的实用技巧,为开发者提供了从安装配置到高效使用的完整指南。原创 2025-08-05 09:55:03 · 1766 阅读 · 0 评论