使用Few-Shot Prompting和工具调用提升AI模型性能
引言
在人工智能和机器学习领域,提高模型的性能和准确性一直是研究的重点。本文将介绍一种强大的技术组合:Few-Shot Prompting和工具调用(Tool Calling)。这种方法不仅能够帮助模型更好地理解任务,还能让模型更准确地使用外部工具来解决复杂问题。
Few-Shot Prompting简介
Few-Shot Prompting是一种提示技术,通过向模型提供少量示例来指导其完成特定任务。这种方法特别适用于那些难以用简单指令描述清楚的复杂任务。
工具调用(Tool Calling)
工具调用允许AI模型使用预定义的函数或API来执行特定操作,如数学计算、数据查询等。这大大扩展了模型的能力范围。
结合Few-Shot Prompting和工具调用
通过结合这两种技术,我们可以教会模型如何正确使用工具,并在复杂任务中遵循特定的步骤或顺序。
步骤1:定义工具
首先,我们需要定义模型可以使用的工具:
from langchain_core.tools import tool
@tool
def add(a: int, b: int) -> int:
"""Adds a and b."""
return a + b
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies a and b."""
return a * b
tools