
大模型应用开发实战
文章平均质量分 90
1.大模型应用实战含微调、提示工程,API集成、部署优化等,结合行业案例解析技术落地场景。
2.RAG实战围绕具体案例,覆盖从商业目标分析到后期运维运营的全生命周期实践。
3.Agent 应用实战以电商客服场景为例,构建可自主处理咨询、查询订单、协助退换货及推荐商品的智能电商客服多Agent系统。
优惠券已抵扣
余额抵扣
还需支付
¥69.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
技术与健康
躬耕技术领域多年,混过大厂,呆过创业公司。主要关注AI领域的大模型企业落地,AI辅助编程教育普及等内容,致力于AI创新和应用,推动AI赋能企业数字化转型
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《大模型 Agent 应用实战指南》第13章:Agent 的未来趋势与伦理考量
Agent 的未来将走向。原创 2025-06-30 09:05:38 · 289 阅读 · 5 评论 -
《大模型 Agent 应用实战指南》第12章:Agent 运营与持续优化
数据闭环与反馈是 Agent 持续优化的生命线。通过。原创 2025-06-30 09:05:16 · 26 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第11章:Agent 持续监控与运维
实时监控是 Agent 系统运维的基石,它不仅覆盖传统的系统健康和 API 性能,更深入到 Agent 独特的 LLM 调用、Token 费用和用户交互等层面。通过全面监控。原创 2025-06-30 09:04:56 · 29 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第10章:Agent 应用部署与扩容
Agent 应用的部署是其走向生产的关键。原创 2025-06-30 09:03:53 · 36 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》 第9章:Agent 结果可信性验证与幻觉规避
证据链回溯是构建可信赖、可解释 Agent 系统的基石。通过系统地记录 Agent 的。原创 2025-06-30 09:03:25 · 778 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第8章:Agent 测试策略与评估
单元测试是对软件中最小可测试单元(如函数、方法、类)进行的独立测试,旨在验证其功能是否按预期工作。在 Agent 语境下,这些“单元”通常是 Agent 内部的各个组件。原创 2025-06-30 09:03:02 · 27 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第7章:多 Agent 协作与复杂流程
多 Agent 架构通过将复杂问题分解给专业的子 Agent 来处理,极大地增强了 Agent 系统的。原创 2025-06-30 09:02:40 · 109 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第5章:(Tools)工具集成与管理
大模型 Agent 的强大之处,在于它不仅仅能“说”和“思考”,还能**“做”。这种“做”的能力,就是通过工具(Tools)**来实现的。工具是 Agent 与外部世界交互的接口,它把 Agent 的智能决策转化为实际行动,比如查询数据库、发送邮件、调用第三方服务等。要让 Agent 能够使用这些工具,我们首先需要对现有系统中的各种功能进行定义和封装。这就像给 Agent 准备一个工具箱,每个工具都有明确的名称、功能和使用说明。在 Agent 的语境中,一个“工具”通常是一个特定功能的封装。原创 2025-06-27 08:40:43 · 694 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第6章:知识库构建与 RAG 增强
结构化数据是指那些以预定义格式组织的数据,它们通常存储在关系型数据库、电子表格或特定的数据结构中,具有明确的行、列、表等Schema。这种数据易于查询、排序和分析。原创 2025-06-27 08:41:12 · 1038 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第4章:核心 Agent 设计与提示工程
定义:思维链 (CoT) 是指在给 LLM 的提示词中,通过提供包含中间推理步骤的示例或明确要求 LLM 逐步思考的指令,来促使 LLM 生成一个逻辑清晰、环环相扣的推理过程,最终得出结论或执行行动。目的:解决 LLM 在处理复杂问题时可能出现的“跳步”或逻辑混乱问题,提升其推理的准确性和鲁棒性。它让 LLM 不仅知道“是什么”,更知道“为什么”和“如何做”。对比:传统 Prompt:直接给出问题,期望 LLM 直接给出答案。用户:“我的订单ABC123能退货吗?原创 2025-06-26 17:11:25 · 126 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》 第3章:基础架构与技术选型
构建一个大模型 Agent 系统,离不开一系列核心技术组件的支撑。这些组件共同构成了 Agent 的“骨架”和“大脑”,使其能够理解、推理、行动。在规划初期,选择合适的基础技术栈至关重要,它将直接影响系统的性能、成本、可扩展性和开发效率。原创 2025-06-26 17:09:29 · 29 阅读 · 0 评论 -
RAG实战 附录常用工具与库清单,常见问题
本附录旨在为读者提供额外资源,帮助读者将理论知识转化为实际应用。我们将列出 RAG 系统开发中常用的工具与库,提供实用的案例代码仓库地址,并解答在 RAG 开发和部署过程中可能遇到的常见问题。原创 2025-06-26 08:29:54 · 34 阅读 · 0 评论 -
RAG实战 第七章:RAG 的前沿与未来展望
本章将对 RAG 技术进行总结,并展望其未来的发展方向。我们将探讨 RAG 如何与其他 AI 技术融合,以及在更复杂的应用场景中如何演进。同时,本章还将重点讨论 RAG 应用中不可忽视的伦理、隐私和安全挑战,并提出相应的风险管理策略,确保 RAG 技术的健康和负责任发展。原创 2025-06-26 06:41:50 · 27 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第2章:商业目标与 Agent 能力边界定义
在规划智能客服 Agent 时,核心在于。原创 2025-06-25 23:11:22 · 61 阅读 · 0 评论 -
《大模型 Agent 应用实战指南》第1章:Agent 范式概览与商业机遇
在理解了传统 LLM 应用范式的局限之后,我们现在可以深入探讨大模型 Agent (Large Language Model Agent)这一开创性的概念。简单来说,一个大模型 Agent 不仅仅是一个文本生成器,它被赋予了自主思考、规划、执行和反思的能力,使其能够像人类一样,将一个高层次的目标分解为可执行的步骤,并利用外部工具来完成这些步骤。你可以将 Agent 想象成一个拥有了“大脑”(LLM)和“手脚”(工具)的智能实体,它能够理解复杂的指令,并采取一系列行动来实现目标,而不仅仅是给出答案。原创 2025-06-25 23:09:50 · 35 阅读 · 0 评论 -
RAG 实战 第二章:技术选型与架构设计
检索增强生成(RAG)系统之所以强大,在于它巧妙地结合了信息检索的精准性与大型语言模型(LLM)的生成能力。检索模块生成模块以及将两者有机结合并优化的编排与优化模块。原创 2025-06-24 10:45:01 · 609 阅读 · 0 评论 -
RAG实战 第五章:RAG 中的 LLM 生成与提示工程
本章将深入探讨 RAG 系统的另一个核心支柱——。我们将学习如何利用提示工程(Prompt Engineering)这一强大技术,引导 LLM 结合检索到的上下文信息,生成高质量、准确且符合需求的答案。本章还将涵盖优化生成效果的策略,以及如何处理 LLM 可能出现的幻觉问题。原创 2025-06-25 08:02:00 · 490 阅读 · 0 评论 -
RAG实战 第四章:RAG 检索增强技术与优化
本章将深入探讨 RAG 系统的核心——。我们将从最基础的相似度搜索开始,逐步讲解如何通过各种高级检索策略和优化技巧,确保 RAG 系统能够从海量知识库中精准、高效地找到最相关的上下文信息,从而显著提升生成答案的准确性和质量。原创 2025-06-24 23:01:48 · 657 阅读 · 0 评论 -
RAG实战 第六章:RAG 系统部署、监控与持续优化
将 RAG 应用从开发环境迁移到生产环境,并确保其长期稳定、高效、可靠地运行,是构建成功智能客服助手的最后也是最重要的一步。本章将引导读者完成 RAG 系统的部署,并详细讲解如何对其进行有效的监控、日志管理以及基于性能反馈进行持续优化的策略。原创 2025-06-25 08:02:49 · 362 阅读 · 0 评论 -
RAG实战 第一章:商业目标与需求分析
本章将深入探讨检索增强生成(RAG)应用的,并针对进行详细的需求分析。我们将从宏观视角审视 RAG 如何解决传统问答系统的痛点,延伸至其在各行各业的广阔应用前景,最后聚焦于我们实战案例的具体需求,并确立衡量成功的关键指标。原创 2025-06-24 10:44:20 · 268 阅读 · 0 评论 -
RAG实战 第三章:知识库构建与管理
本章将详细阐述 RAG 系统中最核心的“知识”部分——。我们将深入探讨从多样化的企业数据源中提取信息,经过清洗、切分、嵌入等处理,最终高效地存储于向量数据库,并实现后续更新与维护的全流程。高质量的知识库是 RAG 系统准确性和可靠性的基石。原创 2025-06-24 23:01:08 · 469 阅读 · 0 评论 -
【10】构建一个具备短期+长期记忆、多模态输入、移动端推理、自我反思能力的智能 Agent
如何实现跨平台一致性?统一模型格式:使用 ONNX 作为模型交换格式,然后针对不同平台(TFLite for Android/iOS, Core ML for iOS)转换。推理引擎:使用支持多平台的推理库,如 TensorFlow Lite, PyTorch Mobile。前端框架:使用 Flutter 或 React Native 构建统一的用户界面,通过原生模块与底层 AI 逻辑桥接。服务层。原创 2025-06-22 16:48:50 · 120 阅读 · 0 评论 -
【09】设计并实现一套面向 Agent 任务规划的 DSL 语言
将 DSL 的定义、解析、执行和工具调用明确分层,提高模块化和可维护性。eval()是最大的安全隐患。在任何生产环境中,务必替换为安全的表达式解析器或规则引擎。强大的日志和监控是系统稳定性和可调试性的关键。使用线程或异步框架(如asyncio)来处理任务执行,防止阻塞主服务。考虑未来可能引入的 DSL 特性(如循环、并行、错误处理策略)和工具类型,使设计具有良好的扩展性。这个方案提供了一个起点,您可以根据项目的具体需求和规模,逐步完善和增强这些功能。原创 2025-06-21 06:25:11 · 40 阅读 · 0 评论 -
【08】开发一个基于 MCP 协议的多 Agent 协作系统
开发一个基于 MCP 协议的多 Agent 协作系统。这个系统将能够接收用户问题,并协调多个 Agent 协作完成任务,例如研究、撰写、审核和润色。还要考虑失败重试、gRPC 通信和任务队列持久化。你希望构建一个多 Agent 协作系统,其中:输入:用户提出的问题(例如“帮我写一篇关于 AI Agent 的文章”)。输出:通过多个 Agent 的协作,完成相应的任务(例如文章撰写)。核心功能:Agent 之间的协作。扩展项:我们将构建一个中央协调器 (Coordinator) 和多个不同职责的 Agent。原创 2025-06-21 06:22:58 · 119 阅读 · 0 评论 -
【07】设计一个支持多轮对话的订单查询客服流程
连接到您的MongoDB数据库,您可以查看 chatbot_db 下的 conversations 和 session_states 集合,确认对话记录和会话状态是否正确持久化。由于这是一个比较复杂的系统,我将为您提供核心组件的伪代码和设计思路。:负责解析用户输入的文本,识别用户意图(如“查询订单”)和提取关键实体(如“订单号”)。:与实际的订单管理系统(OMS)、物流系统等进行交互,获取订单状态、物流信息。对话管理模块:根据NLU的结果和当前的对话状态,决定下一步的响应。对话管理是多轮对话的核心。原创 2025-06-20 07:03:12 · 148 阅读 · 0 评论 -
【06】一个基于LLM的融合文档检索、图谱推理的问答系统
将检索到的文本片段和图谱推理出的结构化事实(可以将其转换为自然语言句子,如“根据图谱,A 公司的最大股东是实体X,持股比例为20%。这个模块的目的是将从非结构化文档中检索到的信息和从知识图谱中推理出的结构化事实有效地结合起来,并对它们的可靠性和相关性进行评估。它利用知识图谱中丰富的实体和关系,通过逻辑推理来发现隐含的事实或路径,从而回答需要多步分析的问题。LLM 生成模块的职责是接收经过筛选和优化的上下文信息,并利用大型语言模型的强大能力,生成一个自然、流畅、准确且直接回答用户问题的最终答案。原创 2025-06-20 06:50:14 · 49 阅读 · 0 评论 -
【大模型开发实战 专栏已发布 活动优惠价 感兴趣快快入手】:解锁Langchain、Agent、RAG与MCP的核心能力
专栏内容全是目前大模型应用开发最广泛实用的技术,对于入手和进阶都是非常好的助力。专栏覆盖大模型微调、提示工程、API集成、部署优化等热点领域,结合行业案例解析技术落地场景。针对入门者,专栏提供清晰的开发环境配置、模型调用基础教程;对于进阶开发者,深入解读RAG增强、多模态交互、成本控制等复杂议题。原创 2025-06-19 09:08:18 · 561 阅读 · 0 评论 -
【05】构建一个基于 FAISS/Milvus 的 FAQ 检索系统
我们将构建一个基于 FAISS 的 FAQ 检索系统,其核心思想是将 FAQ 问题的文本转换为向量(嵌入),然后使用 FAISS 在这些向量中快速查找与用户问题向量最相似的 FAQ 问题。在这个步骤中,我们将准备 FAQ 数据。多轮对话上下文过滤的目标是:将当前用户问题与之前的对话历史结合起来,生成一个更具上下文信息的新查询,然后用这个新查询去进行 FAQ 检索。这一步的目标是编写一个函数,它能接收用户的自然语言问题,然后利用之前构建的 FAISS 索引,找到最相关的 FAQ 条目并返回其答案。原创 2025-06-19 08:53:02 · 32 阅读 · 0 评论 -
【04】基于 LoRA 微调垂直领域客服问答应用
我们将采用 LoRA (Low-Rank Adaptation) 技术来微调一个预训练的语言模型(例如 LLaMA),使其在医疗或法律等垂直领域问答中表现更出色。微调完成后,我们会将 LoRA 权重合并到原始模型中,然后部署为一个可供调用的 API。获取并处理垂直领域的问答数据集。选择一个合适的预训练模型,并准备好其环境。利用 LoRA 技术在领域语料上对模型进行高效微调。评估微调后的模型在垂直领域问答任务上的准确率。将微调得到的 LoRA 权重合并到原始模型中。原创 2025-06-19 08:52:08 · 28 阅读 · 0 评论 -
【03】训练一个意图识别模型并部署为 API
支持热更新模型:类实现了模型加载和热更新逻辑。它通过定期(或手动触发)检查models目录下是否有新的模型文件,如果发现新文件,则加载并替换当前模型实例。关键在于模型文件的命名约定,例如使用时间戳,以便可以通过排序来识别最新版本。模型加载是独立的,只有当新模型成功加载后,旧模型才会被替换,确保服务的稳定性。提供 Swagger UI 接口文档:使用库。通过初始化,并使用和装饰器定义请求和响应模型。默认通过访问。日志记录:使用 Python 标准库logging。在app.py和。原创 2025-06-19 08:51:21 · 16 阅读 · 0 评论 -
【02】开发一个多 Agent 协同客服系统
首先,我们定义一个抽象基类Agent,所有具体的 Agent 都将继承它。这将确保它们都有一个execute方法,用于执行其核心逻辑。import abc"""Agent 的抽象基类。所有具体的 Agent 都应继承此基类并实现 execute 方法。""""""执行 Agent 的核心逻辑。Args:task_data (dict): 包含 Agent 执行任务所需输入数据的字典。Returns:dict: 包含 Agent 执行结果的字典。"""passAgent 的抽象基类。原创 2025-06-19 08:49:20 · 28 阅读 · 0 评论 -
【01】基于Langchain+工具调用的多任务助手
我们将创建两个工具:一个用于天气查询,另一个用于新闻查询。为了简化演示,我们暂时使用模拟数据。在实际应用中,你可以替换成真实的 API 调用。多任务处理:通过和NewsTool实现了天气查询和新闻查询。工具使用透明化:在回答中可以提示使用了哪些工具(通过解析 Agent 的输出)。历史对话上下文:通过实现了对话记忆,让助手能够理解上下文。缓存结果:通过优化了 LLM 的重复调用。基础错误处理:在工具内部和外部调用层都考虑了错误情况。原创 2025-06-19 08:48:11 · 23 阅读 · 0 评论