全连接神经网络实现手写数字识别

本文将分享一个使用PyTorch实现的手写数字识别项目,基于MNIST数据集构建全连接神经网络模型。

项目概述

本项目实现了一个三层全连接神经网络,用于识别手写数字(0-9)。包含完整的数据处理、模型训练、验证评估和预测功能。

代码结构解析

1. 数据预处理与加载

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST的均值和标准差
])

关键点:

  • ToTensor(): 将PIL图像转换为PyTorch张量,并自动归一化到[0,1]范围

  • Normalize(): 使用MNIST数据集的均值和标准差进行标准化,提高训练稳定性

train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
eval_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

数据划分:

  • 训练集:60,000张图像

  • 验证集:10,000张图像

  • 自动下载并缓存到本地./data目录

下载好后的目录结构

2. 神经网络模型设计

class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
        self.fc1 = nn.Linear(784, 256)  # 输入层→隐藏层1
        self.bn1 = nn.BatchNorm1d(256)   # 批归一化层
        self.relu = nn.ReLU()            # 激活函数
        self.fc2 = nn.Linear(256, 128)   # 隐藏层1→隐藏层2
        self.bn2 = nn.BatchNorm1d(128)   # 批归一化层
        self.fc3 = nn.Linear(128, 10)    # 隐藏层2→输出层

网络架构特点:

  • 输入层: 784个神经元(28×28像素展平)

  • 隐藏层1: 256个神经元 + 批归一化 + ReLU激活

  • 隐藏层2: 128个神经元 + 批归一化 + ReLU激活

  • 输出层: 10个神经元(对应0-9数字分类)

批归一化(BatchNorm)的作用:

  • 加速训练收敛

  • 减少对初始化的敏感性

  • 提供一定的正则化效果

3. 训练过程优化

def train(model, train_loader, epochs):
    model.train()
    for epoch in range(epochs):
        total_loss = 0
        correct = 0
        for batch_idx, (data, target) in enumerate(train_loader):
            # 前向传播
            output = model(data)
            loss = criterion(output, target)
            
            # 反向传播
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            # 统计指标
            total_loss += loss.item()
            _, predicted = torch.max(output.data, 1)
            correct += (predicted == target).sum().item()

训练关键要素:

  • 损失函数: CrossEntropyLoss(适合多分类问题)

  • 优化器: Adam(自适应学习率,训练效果较好)

  • 学习率: 0.001(常用初始值)

  • 批量大小: 64(平衡训练效率和内存使用)

4. 验证评估机制

def eval(model, eval_loader):
    model.eval()  # 切换到评估模式
    with torch.no_grad():  # 禁用梯度计算
        for data, target in eval_loader:
            output = model(data)
            # ...计算损失和准确率...

评估模式特点:

  • model.eval(): 关闭Dropout和BatchNorm的训练/评估模式切换

  • torch.no_grad(): 减少内存消耗,加速计算

  • 使用完整验证集进行评估,确保结果可靠性

5. 预测功能实现

def predict(img_path, model):
    img = Image.open(img_path).convert('L')  # 转换为灰度图
    transform = transforms.Compose([
        transforms.Resize((28, 28)),        # 调整尺寸
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))  # 与训练一致的预处理
    ])
    t_img = transform(img).unsqueeze(0)     # 添加批次维度

预测注意事项:

  • 图像必须预处理为与训练数据相同的格式

  • 保持相同的归一化参数至关重要

  • unsqueeze(0)为单张图像添加批次维度

完整代码:

import torch
from torch import nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch import optim
from PIL import Image

# 数据预处理 - 添加归一化
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST的均值和标准差
])

# 数据准备
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
eval_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
eval_loader = DataLoader(dataset=eval_dataset, batch_size=512, shuffle=False)  # 验证时不需要shuffle

# 定义网络结构
class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
        self.fc1 = nn.Linear(784, 256)
        self.bn1 = nn.BatchNorm1d(256)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(256, 128)
        self.bn2 = nn.BatchNorm1d(128)
        self.fc3 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        x = self.fc1(x)
        x = self.bn1(x)  # 批归一化在激活函数之前
        x = self.relu(x)
        x = self.fc2(x)
        x = self.bn2(x)  # 批归一化在激活函数之前
        x = self.relu(x)
        x = self.fc3(x)
        return x

model = MyNet()
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练
def train(model, train_loader, epochs):
    model.train()

    for epoch in range(epochs):
        total_loss = 0
        correct = 0
        for batch_idx, (data, target) in enumerate(train_loader):
            output = model(data)
            loss = criterion(output, target)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            _, predicted = torch.max(output.data, 1)
            correct += (predicted == target).sum().item()
            
            if batch_idx % 100 == 0:
                print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}] '
                      f'Loss: {loss.item():.6f}')
        
        avg_loss = total_loss / len(train_loader)
        accuracy = 100. * correct / len(train_loader.dataset)
        print(f'Train Epoch: {epoch} Average loss: {avg_loss:.4f}, Accuracy: {accuracy:.2f}%')

# 验证
def eval(model, eval_loader):
    model.eval()
    eval_loss = 0
    correct = 0

    with torch.no_grad():
        for data, target in eval_loader:
            output = model(data)
            eval_loss += criterion(output, target).item()  # 累加批损失

            _, predicted = torch.max(output.data, 1)
            correct += (predicted == target).sum().item()

    eval_loss /= len(eval_loader)  # 除以批数量,不是数据集大小
    accuracy = 100. * correct / len(eval_loader.dataset)
    print(f'\nValidation set: Average loss: {eval_loss:.4f}, Accuracy: {accuracy:.2f}%\n')

# 保存模型
def save_model():
    torch.save(model.state_dict(), 'mnist_fc_model.pt')

# 预测 - 使用与训练相同的预处理
def predict(img_path, model):
    model.eval()
    
    img = Image.open(img_path).convert('L')
    transform = transforms.Compose([
        transforms.Resize((28, 28)),
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))  # 添加与训练相同的归一化
    ])
    t_img = transform(img).unsqueeze(0)
    
    with torch.no_grad():
        output = model(t_img)
        _, predicted = torch.max(output.data, 1)
        print(f'Predicted digit: {predicted.item()}')

epochs = 5

train(model, train_loader, epochs)
eval(model, eval_loader)

save_model()

下载好对应的依赖库后,代码可直接运行


可以看到,经过五轮的训练后,我们的准确率达到了98%以上,并且对于测试集的预测正确率也达到了98%左右


这个项目展示了深度学习项目的基本流程,是学习PyTorch和图像分类的入门示例。通过理解每个组件的功能和作用,可以为进一步的深度学习项目打下坚实基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值