机器学习及其挑战

机器学习是人工智能的分支,通过数据和算法模拟人类学习。它涉及监督学习、无监督学习和深度学习,广泛应用在语音识别、客户服务、计算机视觉和推荐引擎等领域。尽管存在技术奇点和隐私等伦理挑战,但机器学习正改变我们的生活和工作方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是机器学习

机器学习是人工智能(AI)和计算机科学的一个分支,专注于使用数据和算法来模仿人类学习的方式,逐步提高其准确性。

Arthur Samuel因“Some studies in machine learning using the game of checkers”此论文中,创造了“机器学习”一词而受到赞誉。自称跳棋大师的罗伯特·尼利 1962 年在一台 IBM 7094 电脑上玩过这个游戏,结果输给了电脑。与今天可以做到的相比,这一壮举似乎微不足道,但它被认为是人工智能领域的一个重要里程碑。

在过去的几十年里,存储和处理能力的技术进步使得一些基于机器学习的创新产品成为可能,例如 Netflix 的推荐引擎和自动驾驶汽车。

机器学习是不断发展的数据科学领域的重要组成部分。通过使用统计方法,对算法进行训练以进行分类或预测,并揭示数据挖掘项目中的关键见解。这些洞察力随后推动应用程序和业务内的决策制定,理想地影响关键增长指标。随着大数据的不断扩展和增长,市场对数据科学家的需求将会增加。他们将被要求帮助确定最相关的业务问题以及回答这些问题的数据。

机器学习算法通常使用加速解决方案开发的框架创建,例如 TensorFlow 和 PyTorch。

机器学习 VS 深度学习 VS 神经网络

由于深度学习和机器学习往往可以互换使用,因此值得注意的是两者之间的细微差别。机器学习、深度学习和神经网络都是人工智能的子领域。然而,神经网络实际上是机器学习的一个子领域,而深度学习是神经网络的一个子领域。

深度学习和机器学习的不同之处在于每种算法的学习方式。“深度”机器学习可以使用标记数据集(也称为监督学习)来为其算法提供信息,但它不一定需要标记数据集。深度学习可以提取原始形式的非结构化数据(例如,文本或图像),并且它可以自动确定将不同类别的数据彼此区分开来的一组特征。这消除了一些所需的人工干预,并允许使用更大的数据集。正如 Lex Fridman 在MIT 讲座 (01:08:05)中指出的那样,您可以将深度学习视为“可扩展的机器学习” (链接位于 IBM 外部)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值