ubuntu安装cudnn

本文详细介绍了如何在Linux环境下配置CUDA环境变量,包括设置路径、测试CUDA安装,以及安装和验证cuDNN的过程。通过一系列命令操作,确保CUDA和cuDNN能够正确安装并运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有些忙,这一段时间,博客就随便写写了~~~
默认cuda安装好了,这里就不多说了,我们从cuda的环境变量开始说起:
配置cuda环境变量:
打开终端,输入”gedit ~/.bashrc“,然后再弹出的编辑器的最后,添加如下两行

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

测试CUDA
进入你的CUDA Example所在目录,默认是主目录,找到“NVIDIA_CUDA-10.0_Samples”。依次打开“1_Utilities”–>“deviceQuery”,然后重新打开一个终端输入:

# 使.bashrc的环境变量生效,重启之后或者打开新终端就不用再执行这一行了
source ~/.bashrc
# 修改文件权限
sudo chmod -R 777 *
# 编译
make
# 运行
./deviceQuery

出现”Result = PASS“字样时,说明安装成功了
安装CUDNN:
地址:https://developer.nvidia.com/rdp/cudnn-archive
选择符合自己cuda版本的
下载“cuDNN Library for Linux”那一个,
安装cudnn
安装过程实际上是把cudnn的头文件复制到CUDA的头文件目录里面去;把cuDNN的库复制到CUDA的库目录里面去。
首先需要将下载的cudnn解压,之后再执行如下命令:(大家也可以一个一个的移动到相应的cuda文件下)

# 复制cudnn头文件
sudo cp cuda/include/* /usr/local/cuda-10.0/include/
# 复制cudnn的库
sudo cp cuda/lib64/* /usr/local/cuda-10.0/lib64/
# 添加可执行权限
sudo chmod +x /usr/local/cuda-10.0/include/cudnn.h
sudo chmod +x /usr/local/cuda-10.0/lib64/libcudnn*

检验:
输入如下命令:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

出现如下则证明安装成功:
在这里插入图片描述

### 如何在Ubuntu安装和配置cuDNN #### 下载 cuDNN 库 为了获取 cuDNN 文件,需访问 NVIDIA 的官方网站并下载适用于所安装 CUDA 版本的 cuDNN 库。确保登录到具有权限下载这些资源的账户。 #### 解压文件 一旦下载完成,解压缩 tarball 文件。对于版本 11.0 和 cuDNN v8.0.4 来说,可以使用如下命令来解压: ```bash tar -zxvf cudnn-11.0-linux-x64-v8.0.4.30.tgz ``` 这会创建一个名为 `cuda` 的目录,其中包含了必要的头文件和库文件[^3]。 #### 复制文件至 CUDA 目录 接着把解压出来的文件复制到现有的 CUDA安装路径下(通常是 `/usr/local/cuda`)。执行以下指令可实现这一点: ```bash sudo cp -rf cuda/include/* /usr/local/cuda/include/ sudo cp -rf cuda/lib64/* /usr/local/cuda/lib64/ ``` 以上操作将 cuDNN 的头文件放置于 include 子目录内,并将其共享对象置于 lib64 中。 #### 设置读取权限 为了让其他用户也能正常调用这些新加入的库项,应当给予相应的读权限给它们: ```bash sudo chmod a+r /usr/local/cuda/include/* sudo chmod a+r /usr/local/cuda/lib64/* ``` 通过赋予适当的读权能保证程序能够顺利加载所需的动态链接库而不会遇到权限不足的问题。 #### 更新环境变量 (如果尚未设置) 最后一步是确认 `.bashrc` 或者系统的 profile 配置里已经加入了指向 CUDA 安装位置的相关环境变量定义;如果没有的话,则添加下面几行代码进去: ```bash export PATH=/usr/local/cuda/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 这样做的目的是让编译器以及运行时系统知道去哪里寻找 CUDA 及其扩展组件比如 cuDNN 所提供的工具链和支持函数库[^2]。 完成了上述步骤之后便可以在 Ubuntu 上成功部署好 cuDNN 并准备开展基于 GPU 加速的任务了。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陶陶name

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值