如何用Langchain封装自定义语言模型

为了将一个自定义的语言模型集成到 LangChain 中,你需要创建一个类来继承 langchain_core.language_models.llms.LLM 类,并实现特定的方法。下面是一些关键点,可以帮助你构思如何集成你的语言模型:

继承 LLM

你需要从 langchain_core.language_models.llms.LLM 类继承,并且至少实现 _call 方法。这个基类提供了一些通用的功能,比如回调管理等。

实现 _call 方法

这是最重要的方法,它定义了如何调用你的语言模型来生成文本。方法签名如下:

def _call(
    self,
    prompt: str,
    stop: Optional[List[str]] = None,
    run_manager: Optional[CallbackManagerForLLMRun] = None,
    **kwargs: Any,
) -> str:
  • prompt: 用户提供的文本提示。
  • stop: 一个可选的字符串列表,这些字符串如果出现在生成的文本中,将会停止生成过程。
  • run_manager: 一个可选的回调管理器,用于跟踪和报告生成过程中的状态。
  • **kwargs: 其他可变的关键字参数,这些参数可能会被模型使用。

其他常用方法和属性

  • _llm_type 属性: 返回一个字符串标识你的语言模型的类型。
  • _identifying_params 属性: 返回一个字典,其中包含识别该模型实例的重要参数。
  • _check_validity_of_input 方法: 用于检查输入的
### LangChain4J 中实现自定义模型功能调用 在LangChain4J框架下,为了实现自定义模型的功能调用,通常会通过创建特定的`ToolSpecification`来封装所需调用的方法及其参数。此过程涉及定义工具名称、描述以及各个参数的信息。 对于自定义模型而言,假设有一个名为`CustomModelPredictor`的服务类,该服务负责接收输入数据并返回预测结果。下面展示了一个具体的例子,说明如何构建这样的工具规格: ```java // 定义用于指定参数类型的辅助方法 private static ParameterType type(String typeName){ switch (typeName.toLowerCase()){ case "string": return ParameterType.STRING; case "integer": return ParameterType.INTEGER; default: throw new IllegalArgumentException("Unsupported parameter type"); } } // 构建自定义模型调用的工具规格 ToolSpecification customModelSpec = ToolSpecification.builder() .name("custom_model_predict") // 工具名称 .description("使用自定义训练的大规模语言模型进行推理") // 描述 .addParameter( "input_text", type("string"), "待处理的文本字符串" ) // 添加参数 .build(); ``` 一旦完成了上述配置工作,则可以在应用程序逻辑中利用这个`ToolSpecification`对象来进行实际的功能调用操作。值得注意的是,在真实场景里还需要考虑异常处理机制和服务端点的安全认证等问题[^3]。 此外,当涉及到更复杂的交互流程时,可能还会引入代理(Agent)的概念,它能够协调多个不同类型的工具之间的协作关系,从而更好地支持业务需求。不过这部分内容超出了当前讨论范围内的简单示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pumpkin84514

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值