Ollama完整教程:本地LLM管理、WebUI对话、Python/Java客户端API应用

老牛同学在前面有关大模型应用的文章中,多次使用了Ollama来管理和部署本地大模型(包括:Qwen2Llama3Phi3Gemma2等),但对Ollama这个非常方便管理本地大模型的软件的介绍却很少。

本文将分为以下章节对 Ollama 进行介绍:

  1. Ollama 基本介绍,它的作用是什么
  2. Ollama 软件安装、一些常用的系统参数设置
  3. Ollama 管理本地已有大模型(包括终端对话界面)
  4. Ollama 导入模型到本地的三种方式:直接从 Ollama 远程仓库拉取、通过 GGUF 模型权重文件导入到本地、通过 safetensors 模型权限文件导入到本地
  5. 基于 WebUI 部署 Ollama 可视化对话界面
  6. Ollama 客户端 API 应用,包括 Python API 和 Java API 接口应用

Ollama 是什么,它与 Llama 有什么关系?

Ollama官网:https://ollama.com/,官方网站的介绍就一句话:Get up and running with large language models. (开始使用大语言模型。)

Ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型、降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和部署最新大语言模型,包括如Qwen2Llama3Phi3Gemma2等开源的大型语言模型。

Ollama支持的大语言模型列表,可通过搜索模型名称查看:https://ollama.com/library

Ollama官方 GitHub 源代码仓库:https://github.com/ollama/ollama/

Llama是 Meta 公司开源的备受欢迎的一个通用大语言模型,和其他大模型一样,Llama可以通过Ollama进行管理部署和推理等。

因此,OllamaLlama的关系:Llama是大语言模型,而Ollama是大语言模型(不限于Llama模型)便捷的管理和运维工具,它们只是名字后面部分恰巧相同而已!

图片Ollama官网

Ollama 安装和常用系统参数设置

在官网首页,我们可以直接下载Ollama安装程序(支持 Windows/MacOS/Linux):https://ollama.com/

Ollama的安装过程,与安装其他普通软件并没有什么两样,安装完成之后,有几个常用的系统环境变量参数建议进行设置:

  1. OLLAMA_MODELS:模型文件存放目录,默认目录为当前用户目录(Windows 目录:C:\Users%username%.ollama\models,MacOS 目录:~/.ollama/models,Linux 目录:/usr/share/ollama/.ollama/models),如果是 Windows 系统建议修改(如:D:\OllamaModels),避免 C 盘空间吃紧
  2. OLLAMA_HOST:Ollama 服务监听的网络地址,默认为127.0.0.1,如果允许其他电脑访问 Ollama(如:局域网中的其他电脑),建议设置0.0.0.0,从而允许其他网络访问
  3. OLLAMA_PORT:Ollama 服务监听的默认端口,默认为11434,如果端口有冲突,可以修改设置成其他端口(如:8080等)
  4. OLLAMA_ORIGINS:HTTP 客户端请求来源,半角逗号分隔列表,若本地使用无严格要求,可以设置成星号,代表不受限制
  5. OLLAMA_KEEP_ALIVE:大模型加载到内存中后的存活时间,默认为5m即 5 分钟(如:纯数字如 300 代表 300 秒,0 代表处理请求响应后立即卸载模型,任何负数则表示一直存活);我们可设置成24h<
<think>好的,用户想查看服务器配置的环境变量,具体提到了CUDA_VISIBLE_DEVICES、OLLAMA_CONTEXT_LENGTH、OLLAMA_HOST和OLLAMA_MODELS这几个变量。首先,我需要回忆在Linux系统中如何查看环境变量的方法,常用的有printenv、echo和env命令。然后针对每个变量解释其作用,确保信息准确。 用户可能是在配置深度学习或机器学习环境,尤其是涉及到CUDA和OLLAMA相关的工具。需要确认这些环境变量的具体用途,例如CUDA_VISIBLE_DEVICES用于控制GPU的可见性,OLLAMA相关的变量可能用于模型部署和配置。同时要注意用户可能遇到的环境变量未正确设置的问题,可以建议检查是否导出变量或者是否存在拼写错误。 另外,用户提供的引用内容里提到了sasldb_path,但似乎和当前问题关联不大,可能是个错误引用,但需要确认是否有其他相关配置可能影响环境变量。最后,生成的相关问题需要围绕环境变量的查看、设置和常见问题,确保覆盖用户可能遇到的后续疑问。</think>要查看服务器配置的环境变量,可以使用以下方法: ### 查看单个环境变量 ```bash echo $变量名 # 示例 echo $CUDA_VISIBLE_DEVICES echo $OLLAMA_CONTEXT_LENGTH ``` ### 查看所有环境变量 ```bash printenv # 显示所有全局变量 env # 显示当前会话变量 ``` ### 特殊变量说明 1. **CUDA_VISIBLE_DEVICES** - 作用:控制GPU设备可见性 - 格式:`export CUDA_VISIBLE_DEVICES=0,1`(显示前两个GPU) - 验证:`nvidia-smi`对比可见设备变化 2. **OLLAMA_HOST** - 作用:设置Ollama服务监听地址 - 示例:`export OLLAMA_HOST=0.0.0.0:11434` 3. **OLLAMA_MODELS** - 作用:指定模型存储路径 - 示例:`export OLLAMA_MODELS=/opt/models` 4. **OLLAMA_CONTEXT_LENGTH** - 作用:设置模型上下文长度 - 示例:`export OLLAMA_CONTEXT_LENGTH=4096` ### 配置建议 在`~/.bashrc`或`/etc/profile`中添加永久配置: ```bash # CUDA配置 export CUDA_VISIBLE_DEVICES=0 # Ollama配置 export OLLAMA_HOST=0.0.0.0:11434 export OLLAMA_MODELS=/data/models export OLLAMA_CONTEXT_LENGTH=8192 ``` 配置后执行`source ~/.bashrc`立即生效[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值