提示词(Prompt) 是与大语言模型沟通的关键。无论你是在用 ChatGPT,还是开发 LLM 应用,只有写出清晰、高效的提示词,模型才能真正“听懂你在说什么”。
提示工程(Prompt Engineering) 是一门设计高质量提示词的技巧与方法。通过巧妙地提示词设计,可以显著提升大语言模型的输出效果——让它回应得更准确、更连贯、更有创意,也更贴合你的实际需求。
在这篇文章中,我将与你分享一些实用且经过验证的提示工程技巧,并结合它们各自的应用场景,帮助你高效地构建更强大、更智能的大语言模型应用。
一、提示入门
大语言模型很强大,但前提是你得“说对话”。从零样本到少样本,三种基础提示方式,能帮助你快速掌握与模型沟通的核心技巧。它们覆盖了从直接下指令到提供示例的典型用法,是提示工程的起点,也是打好交互基础的关键一步。
(一)零样本提示(Zero-Shot Prompting)
零样本提示无需提供示例,只需给出清晰的指令。
适用于任务简单、模型已有较强“先验知识”的场景,如翻译、知识问答等。
示例提示词:
Translate the Chinese phrase ‘零样本提示’ into English.
👉 在这类任务中,模型通常能直接理解你的指令,无需额外解释或上下文补充。
(二)单样本提示(One-Shot Prompting)
在明确指令的基础上,提供一个示例,帮助模型理解任务要求或输出格式。
适用于输出格式较为规范或容易产生歧义的任务。
示例提示词:
请仅返回中文词语“苹果”的英文翻译,且全部大写。
示例:
中文词语(输入):香蕉
英文翻译(输出):BANANA
👉 通过提供一个参考示例,模型能更准确把握你的预期格式,从而提升输出的一致性和可靠性。
(三)少样本提示(Few-Shot Prompting)
在指令基础上提供多个示例,帮助模型更准确地理解任务目标与输出风格。
适用于任务相对复杂,或需要模型模仿特定语气、格式或风格的场景。
示例提示词:
请判断下列句子的情感倾向,仅返回结果:
positive(积极)、negative(消极)或 neutral(中性)。示例:
“这部电影非常精彩!”:Positive
“服务态度很差,让人失望。”:Negative
“我对这次经历没有特别的感觉。”:Neutral
👉 通过提供多个示例,模型能建立更清晰的上下文理解,显著提升输出的准确性和一致性。
二、角色与语气
模型不仅要回答正确,更要“说得像样”。本节将介绍如何通过设定角色、语气和背景信息,赋予模型特定的风格和人格。无论是模拟医生、撰写营销文案,还是打造虚拟助手,学会控制模型表达,是提升输出质量的重要技巧
(一)角色提示
角色提示是通过为模型设定特定的身份、语气、风格或情感倾向,让它以预设的“角色”来完成任务。
这种方式特别适合开放式任务,比如写作、对话模拟、角色扮演、内容创作等,可以显著影响模型的表达风格和内容选择。
在提示中,不仅要告诉模型要完成什么任务,还需要明确以什么身份、用什么语气和风格来表达。
示例提示词:
写一篇简短文章(500字左右),包含 4 个大学生活的小故事。
角色设定: 扮演一个可爱的大学女生,使用幽默、风趣的语言描述。
这样,模型的输出会带有青春俏皮的语气,风格轻松活泼。
角色提示广泛应用于需要控制语言风格、语气、人设或情感基调的任务,如:
- 营销文案和剧本创作
- 虚拟角色对话模拟
- 智能客服或助手
- 模拟老师、医生、历史人物等专家角色
- 创意写作、演讲稿、情书、日记等场景
👉 角色提示不仅能显著增强内容的人设感和语义一致性,更能提升表达的真实感与感染力,是提示工程中极具实用价值和表现力的重要方法。
(二)上下文提示
上下文提示, 是指在正式指令之前,向模型提供相关的背景信息、情境描述或定制化内容,以帮助其更准确地理解任务,生成更贴切的结果。
当任务依赖特定知识或场景信息时,合理使用上下文提示尤为关键。例如:
- 行业问答(医疗、法律、金融等)
- RAG(检索增强生成)系统
- 多轮对话或基于用户画像的智能交互
示例提示词:
背景信息(Context):我叫 刘明,是智联公司的市场经理。
提示词(Prompt):请写一封发送给团队的邮件,内容是关于即将启动的营销活动。
👉 通过上下文提示,模型能更准确把握角色和场景,输出内容更贴合实际、语境更自然。背景信息越清晰,生成结果的相关性和质量也越高。
(三)改写并回答
“改写并回答”是一种高效提升大语言模型理解力和回答质量的方法。它要求模型在给出最终答案前,先将原始问题进行改写,使问题更清晰、完整且富有上下文。这样,模型能更好把握提问意图,生成更准确、严谨的回复。
这种方法特别适合于以下场景:
- 问题表述模糊、简略或不完整;
- 问题较为复杂,涉及多重概念或逻辑关系;
- 希望验证模型是否真正理解提问意图;
- 需要更结构化且严谨的回答。
示例提示词:
请先对以下问题进行改写,使其更加清晰和完整,然后再给出你的回答:
相关性之间有什么区别?
👉 通过引导模型先重构问题,可以促使其深入理解问题的核心要素和语境,有助于生成更准确、详实的答案。这种方法不仅提升了输出质量,也有助于对模型的推理能力进行评估。
三、思维引航
面对复杂问题,优秀的提示能引导模型像人类一样,循序渐进地进行思考。
本节将介绍思维链(Chain of Thought)、自问自答等结构化提示方法,帮助模型拆解问题、理清逻辑,显著提升输出的条理性与准确度。
这类方法尤其适用于多步推理、复杂分析与决策场景,让AI的回答更具深度和说服力。
(一)自问自答
自问自答是一种引导大语言模型系统化思考的策略。它通过将复杂问题拆解为多个子问题,分别作答,再综合得出最终结论,从而提升模型在多步骤推理和复杂决策中的逻辑深度和连贯性。
该方法适用于以下场景:
- 多步骤推理或综合决策场景。
- 信息相互依赖、需分阶段验证假设的问题。
- 对答案的条理性、透明度和推理深度要求较高的任务。
示例提示词:
我是否应该攻读数据科学硕士学位?
请将此问题拆分成若干子问题,分别回答后,基于分析给出最终建议。
👉 在提示中加入“请展示你的推理步骤”、“请列出假设及其验证”等要求,可以进一步提升模型回答的可解释性和可信度。
(二)回退提示
回退提示是一种分步提问策略:先提出一个宽泛或通用性更强的问题,让模型进行整体分析;然后基于分析结构,提出更具体、情境化的问题,获得针对性的回答。
这种方法特别适合需要综合多个基础因素进行深入分析或决策的场景,能够帮助模型输出更全面、理性且逻辑严密的建议。
示例提示词:
Step 1:通用问题
有哪些关键因素会影响一个人决定是否接受高等教育?
Step 2:具体问题
基于上述因素,一位30岁的在职人士是否应该考虑回大学读硕士?
👉 回退提示通过先构建大背景,再进行具体判断,帮助模型形成更合理、全面的决策建议。
(三)自洽提示
自洽提示要求模型针对同一个问题,生成多个独立答案,再通过“多数投票”选出出现频率最高的结果,确保输出更稳定、一致。
适用于多解但需保证一致性的任务场景,例如:
- 事实性问题(避免偶发性错误)
- 分类判断(提升结果稳定性)
- 推理或数学问题(加强逻辑可靠性)
示例提示词:
机器学习中最流行的编程语言是什么?
请生成5个可能的答案,并返回出现次数最多的那个。
👉 通过“多次思考 + 多数决策”,自洽提示有效降低偶发性错误,提升答案的可信度和稳定性,是高质量输出的有力保障。
(四)思维链提示
在提问时加入提示语 “Let’s think step by step”(让我们一步步思考),可以有效引导模型进行逐步推理。
该方法适用于需要多步推理的任务,如数学计算、逻辑推断、谜题解答等。
示例提示词:
一顿饭打九折后再加7%税,总费用是多少?
让我们一步步思考。
👉 “思维链提示”促使模型系统性拆解问题,显著提升回答的准确率与逻辑清晰度,是复杂、多步骤推理场景的理想选择。
(五)思路脉络提示
思路脉络提示与“思维链提示”相似,但表达更自然,不直接使用“Let’s think step by step”,而是通过诸如“Walk me through this in manageable parts step by step”等引导语,促使模型分步骤、分部分进行推理。
该方法特别适合处理以下类型任务:
- 多变量复杂问答
- 长上下文推理(如对话链、场景模拟)
- RAG(检索增强生成)应用中信息整合
- 数据或场景建模任务(如最优化分析、图结构问题等)
示例提示词:
有5个房间,每个房间里住着一个不同国家的人,他们喝不同的饮料、抽不同的烟,养不同的宠物。请逐步推理出谁养了鱼?
请分步骤、分块地引导我思考,帮推理出谁养了鱼。
👉 “思路脉络提示”帮助模型在逻辑清晰、有序的结构中展开推理,避免跳步、遗漏或碎片化回答。相比直接提问,它更适合深度理解和系统解决复杂问题。
四、思考即行动
模型不仅能思考,还能采取“行动”。通过ReAct框架,让模型在推理与行动之间循环迭代,实现更灵活、更智能的任务执行。本节将介绍思维树、行动循环等方法,为构建具备执行力的AI系统奠定基础。
(一)思维树提示
思维树提示是一种系统化的推理策略,适用于处理复杂、多步骤的问题。它通过将大问题拆解为一系列较小的子问题,并在每个步骤生成多个备选方案,通过评估这些方案的优劣来逐步推进,最终得到最优解。
这种方式类似于决策树的分支探索与剪枝,强调深度思考和多方案对比选择。
适用场景包括:
- 多步骤规划与推理(如产品设计、战略制定)
- 复杂变量权衡的决策场景
- 高准确性要求的逻辑分析任务
示例提示词:
任务背景: 我正在设计一种能够更长时间保温的新型咖啡杯。
提示词:请将这个问题拆解成更小的步骤。在每个步骤中,提出多个可能的解决方案,分析它们的可行性、成本效益和潜在影响,选出最优方案继续推进,直到得到最终的设计方案。
从头脑风暴初步设计概念开始。
👉 思维树提示的核心在于分支生成 + 方案评估 + 逐步推进,适合在需要深入探索、避免思维定势的复杂任务中使用。
(二)推理与行动(ReAct)
ReAct(Reason + Act)是一种引导大语言模型“边思考、边行动”的策略。它通过以下循环流程实现复杂任务处理:
思考(Reason) → 行动(Act) → 观察结果 → 再次思考
在这一过程中,模型不仅能做出推理判断,还可以调用外部工具(如搜索接口、数据库),动态调整策略,持续优化任务执行路径。
ReAct方法特别适用于以下任务:
- 多轮推理与动态决策的复杂问题
- 需要调用外部工具、接口或数据源的任务
- 信息不完整、不断变化的情境(如实时搜索、问题诊断、路径规划等)
示例提示词:
我需要了解当前电动汽车的最新市场趋势。
首先,请推理出最有可能带来相关信息的搜索关键词。
然后,基于这些关键词调用搜索API进行信息检索。
分析返回的搜索结果,提取有用信息,并判断是否需要优化关键词或搜索策略。
如有必要,重复搜索与分析流程,逐步逼近最相关且最新的市场趋势数据。
最终,请总结所获得的关键市场洞察。
👉 ReAct提示让AI像人一样灵活应对不确定性,通过连续的推理与反馈迭代,逐步接近问题的最优解。它是解决开放性、高复杂度任务的强大工具,大幅提升模型的适应性与实用性。
五、总结与未来方向
提示工程,是提升大语言模型输出质量的关键技术。通过灵活运用零样本提示、少样本提示、角色设定、上下文补充、思维链推理等策略,能够有效引导模型更准确地理解任务、生成更符合预期的内容。
每种提示方式都有其独特优势,适用于不同任务和场景。掌握并合理应用这些策略,不仅能显著提升模型输出的准确性、一致性与可控性,更是打造高质量智能产品与服务的坚实基础。
💡 提示工程不是“写一句话”,而是一种系统思维。
六、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。