医疗领域内容生成与评估技术解析
在医疗领域,精准且个性化的信息至关重要。从药物推荐到医疗对话系统,一系列技术的应用旨在提升医疗服务的质量和效率。下面将深入探讨这些技术的关键要点。
个性化药物推荐内容生成
为患者提供个性化的药物摄入建议是医疗信息服务的重要环节。具体操作步骤如下:
1. 数据收集 :从www.rxlist.com获取药物列表,挑选了3000种药物名称;从www.medicinenet.com获取医疗状况列表,选取了500种病症。
2. 构建药物 - 病症对 :通过对所有药物 - 病症对进行详尽迭代,保留具有明确关系的组合,形成D - C对集合。这些关系包括药物治疗病症、药物在特定病症下的副作用、药物在特定病症下引发副作用等。最终整理出4600对,可用于为药物D和患有病症C的患者编写个性化内容。
内容评估与修正
对生成的内容进行评估和修正,以确保其准确性和有意义性。
1. 修正特征分析 :通过表3展示修正特征,包括实体替换、整个短语替换、整句拒绝等操作的平均相对数量和绝对数量,以及未修改接受的句子数量和百分比、原始句子总数、挖掘和使用的真实句子总数。
| 常见症状类别 | 实体替换修正句子数/百分比 | 短语替换修正句子数/百分比 | 拒绝句子数/百分比 | 未修改接受句子数/百分比 | 原始句子总数 | 使用的真实句子总数 |
| — | — | — | — | — | — | — |
| 腹胀 | 3.6/39.56 | 1.8/19.78 | 2.4/26.37 |