python9snake
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
51、医疗领域内容生成与评估技术解析
本博客深入解析了医疗领域内容生成与评估的关键技术,涵盖个性化药物推荐、内容修正与评估、自然语言处理在心理健康中的应用、医疗系统内容处理技术等内容。同时,讨论了医疗对话系统的技术要点、数据错误管理方法、本体论在知识推理中的应用,以及决策支持系统、文本挖掘和图像分析技术。总结了相关技术的发展现状与未来展望,旨在提升医疗服务的质量与效率。原创 2025-08-30 00:51:55 · 20 阅读 · 0 评论 -
50、文本生成与修正系统架构解析
本文详细解析了一种结合深度学习、概率文本合并、图基事实核查和实体替换等技术的文本生成与修正系统架构。通过模块化的流程设计,该系统能够有效提升文本生成的质量与准确性。文章还探讨了各模块的应用场景、优化建议以及未来发展趋势,为相关领域的研究和实践提供了参考。原创 2025-08-29 15:31:26 · 19 阅读 · 0 评论 -
49、自然语言生成内容的处理与优化
本文探讨了自然语言生成(NLG)在内容处理与优化方面的挑战与解决方案,重点分析了内容选择的不可控性和重症监护环境中生成文本的复杂性。文章详细介绍了处理原始生成内容的问题与策略,包括语言数据来源选择、文本对齐方法、事实核查规则以及语篇结构维护。此外,还总结了NLG在医疗领域的应用案例,并展望了未来技术发展趋势和潜在应用领域。原创 2025-08-28 13:47:35 · 17 阅读 · 0 评论 -
48、提升开放领域内容生成:文本挖掘与对齐的应用
本文探讨了如何通过文本挖掘与对齐技术提升开放领域的内容生成质量,特别是在医疗领域中的应用。文章分析了传统自然语言生成方法的局限性,并介绍了改进端到端内容生成的策略,以解决事实扭曲和内容不完整等问题。此外,还讨论了医疗领域内容生成的挑战及应对策略,并提出了个性化内容生成的优化方向,旨在为患者提供更高质量、更可靠的信息服务。原创 2025-08-27 12:52:30 · 16 阅读 · 0 评论 -
47、基于R - C框架的因果关系推理与多模态话语树应用
本文探讨了基于R-C框架的因果关系推理方法及其在多模态话语树(MMDT)中的应用。通过论证表示算法和嵌套论证的处理,从文本中提取逻辑表示并构建论证结构。推理系统结合了逻辑规则与领域本体,验证因果链的蕴含关系。系统架构将文本与数据记录融合,构建多模态话语树,通过评估显示其在犯罪场景识别等复杂任务中的优越性能。MMDT在安全、健康、投诉处理、军事和市场预测等领域展现了广泛的应用潜力,并讨论了其与其他技术的结合以及面临的挑战。原创 2025-08-26 15:08:39 · 14 阅读 · 0 评论 -
46、数据技术在健康管理与疫情防控中的应用
本文探讨了数据技术在健康管理与疫情防控中的关键应用,涵盖话语树与扩展话语树的结构与处理方法、移动位置数据在疫情中的多方面用途、通话详单记录(CDR)的分析与隐私问题、自动车牌识别(ANPR)技术的作用与风险,以及数据记录中的因果推理方法。通过这些技术,可以更有效地进行疫情追踪、防控决策和数据驱动的健康管理,同时也强调了隐私保护与数据安全的重要性。原创 2025-08-25 16:45:29 · 16 阅读 · 0 评论 -
45、健康与安全相关场景的话语分析及多模态话语树研究
本博客围绕健康与安全相关场景的话语分析及多模态话语树展开,探讨了合理怀疑的定义及其在法律场景中的表达方式,分析了多模态话语树在法律、安全管理、犯罪调查及健康管理中的应用价值。博客还介绍了多模态数据源之间的关联、话语树的操作方法及实际示例,并总结了多模态话语树在多个领域的应用优势及未来发展方向。通过多模态话语树的构建与分析,可以更好地理解和处理复杂的多模态信息,为各领域决策提供支持。原创 2025-08-24 09:26:08 · 15 阅读 · 0 评论 -
43、深入解析SAGe患者管理系统:助力临床决策的智慧之选
SAGe患者管理系统是一款基于Dr.Watson型人工智能的临床决策支持工具,专为重症监护室设计。该系统通过六个核心子系统——信息导入、诊断、治疗效率、治疗充分性、患者综合评估和观察终止,为医生提供全面的患者管理支持。系统利用专家规则和多因素分析,结合参数归一化处理与创新的可视化技术(如饼图和花朵生长图),辅助医生进行更准确的诊断与治疗决策。同时,系统通过发现矛盾、引导替代方案、鼓励反思等方式增强医生的临床思维。SAGe不仅支持实时决策,还提供病例回顾性分析功能,促进医疗经验积累。未来,系统有望通过集成更多原创 2025-08-22 10:20:20 · 14 阅读 · 0 评论 -
42、医疗决策中的人工智能协作:原理与实现
本博文探讨了人工智能在医疗决策中的协作机制,重点分析了机器学习决策流程与人类专家的交互过程。通过引入智能中介(M-A)和Dr. Watson型系统,实现对ML决策的解释与人类专家决策的评估,从而提升决策的准确性与可靠性。文章系统地阐述了该方法的原理、优势与局限性,并深入讨论了AI在医疗应用中面临的风险与挑战。此外,博文还提出了基于局部解释算法的交互式问题生成流程,并通过形式化建模和案例分析,展示了人机协作在医疗决策中的广阔前景。原创 2025-08-21 15:32:06 · 16 阅读 · 0 评论 -
40、本体构建与查询扩展技术解析
本文详细解析了本体构建与查询扩展技术,重点探讨了如何通过本体查询重构提升信息检索的准确性。文章介绍了查询扩展中的关键问题和解决方案,并深入分析了系统架构、逻辑形式构建、候选本体条目提取流程以及本体一致性评估方法。通过多个数据集的实验评估,验证了本体构建对搜索相关性的显著提升。最后,文章总结了关键要点,并展望了本体技术在不同领域的应用前景。原创 2025-08-19 09:39:01 · 16 阅读 · 0 评论 -
39、生物信息学中的本体构建与应用
本博客深入探讨了生物信息学中本体的构建与应用,涵盖实体嵌入与查询分类、短语聚合器的设计、支持推理的本体系统、本体验证方法、空间分类法、本体支持的搜索技术等多个方面。通过形式化语义和结构化知识表示,本体在生物医学领域的实体识别、信息整合、推理支持和搜索优化中发挥了重要作用。文章还介绍了本体在临床诊断辅助、药物研发和医学教育等场景中的综合应用,并讨论了本体构建面临的挑战与可能的解决方案。原创 2025-08-18 13:47:05 · 42 阅读 · 0 评论 -
38、文本索引、本体设计与实体识别技术解析
本文深入探讨了文本索引策略、本体设计以及实体识别技术在医学信息处理中的应用。通过修辞结构理论(RST)和话语树(DT)优化索引内容,提高搜索的准确性和召回率;结合SNOMED CT标准和句法解析方法构建医学本体,增强信息的标准化表达;神经字典管理器则利用深度学习方法优化本体结构使用,有效识别非结构化文本中的医学实体及其同义词。这些技术在电子健康记录分析、医学研究和智能问答系统中具有广泛应用前景,并为未来医学信息化发展提供技术支撑。原创 2025-08-17 16:57:09 · 16 阅读 · 0 评论 -
37、基于交际话语树构建医疗本体
本文探讨了基于交际话语树构建医疗本体的方法及其在文本挖掘和问答系统优化中的应用。文章介绍了医疗本体构建的挑战和开放信息提取技术,并分析了如何利用话语特征提高本体条目提取的准确性和可靠性。同时,通过修辞结构理论区分答案的信息性和非信息性部分,提出了优化问答系统召回率和精度的策略。最终,文章展望了这些技术在医疗领域的应用前景,强调了其对提升医疗决策支持系统和医疗服务的价值。原创 2025-08-16 16:55:53 · 16 阅读 · 0 评论 -
36、健康聊天机器人的个性化、交互与对话管理
本文探讨了健康聊天机器人在个性化、交互与对话管理方面的应用与发展。文章分析了有限状态对话管理的特点,讨论了个性化在医疗保健中的重要性,并提出了一个基于明确目标的新型对话模式以解决现有数据驱动聊天机器人缺乏目的性的问题。此外,还介绍了聊天机器人的功能流程、发展趋势、用户界面个性化方法以及心理空间中的交互方式。最后,通过评估DT导航方法展示了其在有效性和用户满意度方面的优势。文章展望了未来聊天机器人在医疗保健领域的潜力,并提供了相关补充数据集供进一步研究。原创 2025-08-15 13:57:57 · 15 阅读 · 0 评论 -
35、智能聊天机器人:从用户意图识别到系统评估
本博客全面探讨了智能聊天机器人的核心技术与评估方法。内容涵盖用户意图识别的规则与算法、系统架构设计中的离线与在线处理流程、DT 导航器的核心作用,以及聊天机器人性能评估的多个维度。同时,博客分析了不同类型的聊天机器人及其面临的挑战,并展望了未来发展趋势。通过技术细节剖析与评估指标分析,为聊天机器人开发者和研究者提供了系统性的参考。原创 2025-08-14 16:44:40 · 16 阅读 · 0 评论 -
34、对话管理:从流程到意图识别
本文深入探讨了聊天机器人中对话管理与用户意图识别的核心技术。内容涵盖基于语篇树(DT)的对话流程设计、用户意图分类与管理、认知状态的建模与更新机制,以及用户问题与交易请求的区分方法。通过理论分析与实际案例相结合,文章展示了这些技术在医疗、金融等领域的应用前景,并提出了未来发展方向。旨在为对话系统的研究与开发提供参考与启示。原创 2025-08-13 15:31:31 · 15 阅读 · 0 评论 -
33、基于文本话语树的对话管理
本文探讨了一种基于文本话语树的对话管理方法,旨在通过模拟人类对话的方式,引导用户专注于文本内容的学习和理解。该方法结合了修辞结构理论和交际话语树,利用核心单元和卫星单元的层次结构,根据用户的兴趣和意图动态提供信息。文章详细阐述了如何通过话语树导航实现灵活的对话流程,并提供了实际示例,展示了聊天机器人如何根据用户的反应进行跳转和调整。这种方法不仅克服了传统对话系统和静态文档在信息传递中的局限性,还为构建高效、智能的人机对话系统提供了新的思路。原创 2025-08-12 10:05:17 · 15 阅读 · 0 评论 -
31、文本对话构建与系统评估全解析
本文探讨了从文本构建对话的机制与系统评估,重点分析了如何将段落文本转换为对话形式,并提出了基于决策树和AMR语义角色的方法生成自然问题。同时,文章详细介绍了系统架构的设计与评估结果,通过健康论坛和汽车维修推荐数据集验证了方法的有效性。研究表明,话语驱动的对话管理在性能上具有竞争力,并为对话系统的优化提供了理论支持和实践指导。原创 2025-08-10 10:43:15 · 17 阅读 · 0 评论 -
30、对话生成、修辞协调与语篇解析技术探索
本博文探讨了对话生成、修辞协调与语篇解析的关键技术。内容涵盖将对话生成视为语言建模问题,使用Transformer架构和PMI提高响应质量;信息丰富对话的策略,包括过渡、确认、细节选择和呈现策略;问答对的修辞一致性分析;以及利用抽象意义表示(AMR)改进语篇解析的方法。此外,还讨论了未来研究方向,如数据扩充、算法优化和跨领域应用,旨在推动对话系统向更智能、自然的方向发展。原创 2025-08-09 09:29:13 · 17 阅读 · 0 评论 -
29、医疗与对话管理:从患者选择到修辞关系计算
本文探讨了医疗环境中患者选择和对话管理领域的最新发展。随着患者对医疗决策的参与度提高,他们越来越依赖质量评级、社交媒体反馈和远程医疗技术(如聊天机器人)来做出选择。对话管理部分重点介绍了如何通过构建话语树和修辞关系来提升对话的逻辑性和连贯性。文章还详细描述了计算修辞蕴含关系的方法,包括基于规则的推理、多句子蕴含任务建模,以及RoBERTa在条件满足预测中的应用。此外,不同推理模式(如数值推理、常识推理)和对话管理在医疗领域的应用前景(如远程医疗、医疗决策支持)也被深入分析。原创 2025-08-08 11:49:58 · 17 阅读 · 0 评论 -
28、人工智能在医疗对话系统中的应用与挑战
本文探讨了人工智能在医疗对话系统中的应用与挑战。文章分析了计算机智能的局限性,并介绍了医疗领域的新趋势,如RBL技术以及心理空间中的替代方法。同时,文章详细讨论了对话系统的分类与特点,重点聚焦检索式聊天机器人的研究,包括多轮响应选择、修辞流学习以及端到端学习方法的挑战。此外,文章还总结了医疗对话系统面临的主要问题,如数据获取困难、逻辑一致性不足等,并提出了可能的解决方案。最终指出,尽管医疗对话系统发展前景广阔,但仍需在数据、技术和管理等方面持续改进以提升其性能和服务质量。原创 2025-08-07 13:31:29 · 17 阅读 · 0 评论 -
27、文本间隐藏信息挖掘:RBL 方法的探索与实践
本文探讨了RBL(Reading Between the Lines)技术在文本间隐藏信息挖掘方面的探索与实践。文章分析了语言模型的局限性,RBL在医疗环境中的应用,以及其在信息检索和多模态融合中的潜力。通过实验和案例分析,展示了RBL在提升搜索召回率、获取隐形知识和贴近人类思维方面的显著优势。同时,文章也讨论了RBL技术的挑战与未来发展方向,并展示了完整的RBL技术流程。原创 2025-08-06 15:17:57 · 15 阅读 · 0 评论 -
26、规则推理与自然语言推理的深入探索
本文深入探讨了规则推理与自然语言推理(NLI)的理论基础、方法及应用。内容涵盖规则推理的统计模型、RBL与NLI的关联、NLI与语义片段的设计、强化学习方法的应用,以及语言模型如GPT-2的能力与局限性。同时,文章对不同方法进行了综合分析,并展望了未来发展方向,旨在推动机器实现类人水平的常识推理与文本理解能力。原创 2025-08-05 12:03:01 · 13 阅读 · 0 评论 -
25、深入解读文本背后的隐含信息挖掘
本文深入探讨了文本隐含信息挖掘(RBL)技术,重点分析了如何从文本中提取潜在的有价值信息。文章涵盖了RBL的基本方法、困难案例的处理、对话中的隐含信息识别、问题形成与多样化、系统架构设计、统计模型应用等多个方面,并总结了RBL的处理流程及应用场景。同时,文中还讨论了RBL技术面临的挑战与应对策略,并展望了其未来发展趋势。通过本博客,读者可以全面了解RBL技术的核心理念和实际应用价值。原创 2025-08-04 15:40:01 · 11 阅读 · 0 评论 -
24、文本隐含信息解读:从AI局限到实际应用探索
本博客探讨了人工智能在解读文本隐含信息(RBL)方面的挑战,特别是在自然语言推理(NLI)任务中的局限性。文章指出,当前端到端的深度学习方法在理解和泛化文本的深层含义方面存在不足,强调了结合符号与神经表示、引入常识知识以及构建更合理的基准测试的重要性。此外,博客通过患者拒绝疫苗接种和饮水建议的案例,展示了如何通过泛化和网络挖掘来揭示隐藏信息,并讨论了在故事讲述中通过话语分析发现隐含意义的方法。最终提出,未来的自然语言理解系统需要更好地整合人类常识,以提升对文本深层意图的理解能力。原创 2025-08-03 11:21:04 · 16 阅读 · 0 评论 -
22、基于深度学习与语义表示的复杂问题解答技术解析
本文深入解析了基于深度学习与语义表示的复杂问题解答技术。首先介绍了门控循环单元(GRUs)及其在文本表示中的应用,接着探讨了基于直接相似性的问答方法,结合抽象意义表示(AMR)图进行语义导航的实例。随后,详细阐述了图对齐操作、答案纠正机制、系统架构与评估方法,并展示了不同数据集的特点与评估意义。最后,总结了系统各组件的协作流程、技术优势、应用前景及未来发展方向。该技术通过融合句法、语义和语篇信息,显著提升了问答系统在处理长、复杂、多跳问题时的性能表现。原创 2025-08-01 16:23:18 · 17 阅读 · 0 评论 -
21、自然语言处理中的注意力机制与语义理解技术
本文详细探讨了自然语言处理中的注意力机制与语义理解技术,涵盖了句法驱动的问答算法、LSTMN模型、句法增强模型以及语义BERT等关键技术。文章分析了这些模型的核心原理、操作步骤、应用场景及优势,并展望了未来自然语言处理技术的发展趋势,包括多模态融合、跨语言应用和可解释性增强等方向。原创 2025-07-31 14:28:51 · 13 阅读 · 0 评论 -
20、基于话语分析的神经机器阅读理解复杂问题解答
本文探讨了基于话语分析的神经机器阅读理解(MRC)在处理复杂、冗长、多句子问题中的应用。通过将话语结构、句法和语义信息融入自注意力机制,提升模型对重要信息的筛选能力,减少噪声干扰,从而改善MRC模型的性能。文章介绍了话语数据集(如PDTB-3)、话语解析方法以及如何将句法信息整合到模型中,并讨论了模型评估的挑战和未来发展方向。研究表明,结合话语分析和句法信息的MRC模型能更准确地处理复杂问题,为自然语言处理领域提供新的思路和方法。原创 2025-07-30 11:53:06 · 37 阅读 · 0 评论 -
19、句法和语义泛化:提升搜索与问题构建的效率
本文探讨了句法和语义泛化在提升搜索效率与问题构建中的应用。从短语归一化、句法泛化到语义泛化,再到属性和时间地理信息的泛化,全面分析了如何通过解析树和语义表示(如AMR)实现文本的泛化处理。同时,文章介绍了格查询技术在搜索查询构建中的应用,以及自动问题生成、干扰项生成和反馈生成的技术方法与挑战。最后,总结了当前推理链模型的局限性,并展望了未来在文本处理与多领域应用中的发展方向。原创 2025-07-29 11:34:22 · 18 阅读 · 0 评论 -
18、自然语言处理中的问题生成与文本泛化技术
本文详细介绍了自然语言处理领域中的问题生成系统和文本泛化技术,探讨了它们在医疗诊断等实际场景中的应用。文章涵盖了基本概念如n-元语法、泛化图和模式结构,并解析了问题生成系统的架构与方法,包括模板法、规则法和统计方法。同时,文本泛化技术结合了word2vec、句法分析、语义分析和命名实体分析,以提升语义相似度评估的准确性。文章还讨论了技术挑战和未来发展方向,并通过实验评估验证了方法的有效性。原创 2025-07-28 11:12:32 · 16 阅读 · 0 评论 -
17、医学诊断中的推理与关键问题构建
本文探讨了医学诊断中的推理模式与关键问题构建方法,重点分析了特殊情况下的问题生成逻辑,以及如何通过肯定前件、假言三段论和否定后件等推理规则进行诊断。文章还介绍了自动化推理链的构建,结合集合论和抽象意义表示(AMR)技术,实现从病例信息生成关键问题的过程。此外,还讨论了这些方法在流感、肺炎等实际案例中的应用,并对不同推理模式进行了对比分析。最后展望了人工智能在医学诊断中的未来发展潜力。原创 2025-07-27 16:23:46 · 15 阅读 · 0 评论 -
16、医疗领域的AI系统与关键问题生成
本文探讨了医疗领域中AI系统的应用与挑战,重点分析了DINAR2系统在区域儿科重症咨询中心支持中的持久作用及其成功因素。文章进一步介绍了自动问题生成(QG)技术的原理与分类,并探讨了其在医学教育和医疗诊断中的实际应用。通过具体案例(如COVID-19症状诊断),展示了关键问题生成在医疗决策中的重要性,并结合逻辑推理和医疗术语逻辑,说明了其对诊断准确性的影响。最后,文章总结了AI系统与问题生成技术在未来医疗中的发展趋势与应用前景。原创 2025-07-26 16:03:32 · 15 阅读 · 0 评论 -
15、深入解析DINAR2系统:区域医疗决策支持的创新力量
DINAR2系统是一款创新的区域医疗决策支持系统,广泛应用于儿童重症监护领域。该系统通过模糊逻辑处理医生提供的数据,构建基于专家规则的诊断流程,并对患者严重程度和主要病理综合征进行评估。DINAR2在俄罗斯及前苏联地区的实际应用中展现了显著的效果,包括降低儿童死亡率和提升医疗决策效率。本文详细解析了DINAR2的方法原理、评估指标以及实际应用效果,并探讨了其市场表现和发展潜力。原创 2025-07-25 15:43:15 · 14 阅读 · 0 评论 -
14、克服医疗领域AI应用挑战:决策系统DINAR2
本文探讨了人工智能在医疗领域应用所面临的挑战,包括领域过拟合、术语问题、认知偏差以及融入临床实践等问题,并以DINAR2系统为例,分析了其如何通过考虑环境特殊性、解决数据问题、注重用户体验和持续改进来应对这些挑战。DINAR2作为一个集成决策支持系统,在儿科重症咨询中发挥了重要作用,为医疗AI的发展提供了宝贵经验。文章最后总结了医疗AI发展的关键路径,强调了适应多样化环境和持续优化的重要性。原创 2025-07-24 12:01:10 · 10 阅读 · 0 评论 -
13、医疗数据库错误的搜索、预防与减少策略
本文探讨了医疗数据库中数据错误的检测、预防与减少策略。通过分析电子病历(EMRs)中数据输入错误的普遍性,研究发现尽管单次输入错误率较低,但错误会随时间累积,总体错误率可能高达7%。文章介绍了多种错误检测方法,包括基于规则的检测算法、模式强制工具和定量错误检测算法,并探讨了警报系统在减少错误中的作用。此外,提出了一种创新的间接错误预防方法——“跟进总结”,通过可视化关键信息和提示可能错误,帮助医生发现数据中的不一致性。文章还分析了错误对机器学习的影响,强调了数据清理的重要性,并讨论了人工智能在医疗数据管理中原创 2025-07-23 16:32:57 · 20 阅读 · 0 评论 -
12、医疗数据库中的错误查找与预防
本文探讨了医疗数据库中数据录入错误的识别与预防,包括内部不一致、外部不一致和遗漏数据等问题。同时分析了初始医疗信息中的错误,如电子健康记录(EHR)中的体重测量误差,并提出了相应的算法和策略来识别和减少这些错误,以提高医疗数据的质量和可靠性。原创 2025-07-22 16:51:43 · 13 阅读 · 0 评论 -
11、医疗专家系统:从临床应用到规则学习的全面解析
本文全面解析了医疗专家系统在临床应用、规则学习、生命周期及使用动态演变等方面的作用、挑战与发展潜力。通过结合实际案例与学术研究,分析了专家系统在医疗决策支持中的优势与不足,并探讨了未来发展方向,包括技术融合、用户体验优化、跨领域合作及标准制定等,旨在推动专家系统在医疗领域的深入应用与持续发展。原创 2025-07-21 11:45:51 · 16 阅读 · 0 评论 -
10、健康管理中的专家系统:原理、应用与优势
本文探讨了专家系统在健康管理中的应用,重点分析了其在健康风险预测、脊柱异常诊断、医院转诊决策及临床需求支持中的原理与优势。文章详细介绍了专家系统的基本组成、推理方法(如反向链推理)及其在医疗领域的实际应用案例,如McAndrew等人的决策支持系统和Chi等人的医院转诊问题解决方案。专家系统通过整合专业知识、提高诊断一致性、减少人为错误和优化资源利用,为医疗质量和效率的提升提供了强有力的技术支持。原创 2025-07-20 09:02:15 · 12 阅读 · 0 评论 -
9、支持决策树的构建、评估及在医疗领域的应用
本文探讨了支持决策树(DecTSup)的构建、评估及其在医疗领域的的应用。详细描述了DecTSup的系统架构,包括从文本分割到实体聚合的完整流程,并通过实验评估了其在疾病治疗说明中的决策精度与覆盖率。同时,文章结合决策树在医疗监督学习中的使用,以乙肝、丙肝和COVID-19为例,展示了其在疾病分类和病情预测中的实际价值。文章还分析了决策树在医疗应用中的优势与挑战,最后展望了未来可能的技术发展方向。原创 2025-07-19 16:21:15 · 13 阅读 · 0 评论 -
8、从文本中获取用于医疗系统应用的支持决策树
本文探讨了如何从文本中提取支持决策树(DecTSup),用于医疗系统中的决策支持。通过结合自然语言处理和机器学习技术,DecTSup不仅保留了决策树的可解释性,还通过文本中的修辞关系、解释和论证提供额外的决策支持信息。文章详细介绍了从文本提取话语树、构建决策链、形成决策导航图和最终生成DecTSup的过程,并通过示例展示了其在2型糖尿病和减肥手术相关决策中的应用。DecTSup适用于不同数据可用性的情况,为医疗诊断和健康管理提供了统一且个性化的决策框架。原创 2025-07-18 12:31:00 · 14 阅读 · 0 评论