过去的两年里,AI可谓席卷各行各业,企业用AI,大家都面临着这样一个问题:AI这么强大,我的企业如何能充分用起来?如何能用好AI?如何能更安全更便宜地使用AI?所以今天就给大家介绍下,企业AI落地开源三剑客:Dify、RAGFlow、n8n。
Dify、RAGFlow、n8n三者区别
先抛出大家最感兴趣和最关心的,下面是我使用后总结出来的三者区别,大家赶紧Mark住,可不是网上随便找来或AI生成凑数的,绝对都是真实的使用感受。
下面针对每一个,进行详细的介绍。
Dify
首先介绍下使用门槛最低、知名度最高、使用面最广、对标字节Coze平台,但是可本地部署的开源智能体神器:Dify。(本地部署可极大降低信息外泄的问题,原则上内网使用,限制访问公共网络可完全解决安全性问题,但这样会使有些功能受限,例如插件无法安装等,后面两个工具也是一样)
官网文档:https://docs.dify.ai/zh-hans/introduction
Github地址:https://github.com/langgenius/dify
Stars数:101K
Dify简介:关于Dify的介绍,我个人的理解概括为下面3点:
-
它是一个创建智能体的低代码平台,可零代码快速创建智能体,对标字节的Coze平台。
-
一般情况下,社区版(开源版)即可满足个人或中小企业基本需求,如需多租户和对安全性有更高的要求,建议选择企业版(商业版)。
-
更重要的是,它的社区活跃、文档齐全、功能强大、可扩展性强、学习成本低、上手快。
安装:建议使用Docker方式进行安装,简单快捷。虽然给出的最低电脑配置是2核+4G内存,但我个人建议用4核+8G比较稳妥。
Dify的版本更新的很快,如果要升级,注意备份存储卷。(数据存储在项目目录的docker/volumes下)
关于具体的使用这里不详细介绍了,后面会继续写公众号文章专门详细介绍Dify的使用,建议大家持续关注。
RAGFlow
第二个,介绍下稍微复杂些,需要有一定RAG基础才能轻松驾驭,但最接近企业级的知识库平台:RAGFlow。所以越是好用的工具,越想充分发挥出工具的特性,往往需要一定的技术储备。否则里面有些设置,要是不懂RAG的情况下,很难理解。
官网文档:https://ragflow.io/docs/dev/
Github地址:https://github.com/infiniflow/ragflow
Stars数:54.3K
RAGFlow简介:关于RAGFlow的介绍,我也用同样用自己的理解概括下:
-
它是一个功能强大的知识库平台,同样支持Agent工作流的创建。
-
它可以覆盖从数据清洗、知识构建到知识问答的全流程能力,并且支持知识图谱。
-
更重要的是,它同样社区活跃(依托LangChain生态)、文档齐全、上手成本略高(需具备一定RAG基础,不适合初学者)
安装:建议使用Docker方式进行安装,简单快捷。但是它对电脑配置的要求很高,因为它的定位是给企业使用,而不是针对个人的,所以建议选择Linux服务器安装(如果个人想Mac安装使用,有很多的坑)。配属上,个人推荐最低8核+32G内存,SSD硬盘。
同样的,关于具体的使用这里不详细介绍了,后面会写公众号文章专门详细介绍RAGFlow的使用,建议大家持续关注。
n8n
最后,介绍一个最复杂,但是最好用,被业界称为瑞士军刀的工作流工具,一般适合IT人员上手使用的开源明星产品:n8n。他的Star数增长的速度令人咂舌,可见业界对他的认可程度有多高。
官网文档:https://docs.n8n.io/
Github地址:https://github.com/n8n-io/n8n
Stars数:103K
n8n简介:关于n8n的介绍,同样用下面三句话进行概括:
-
它是一个社区活跃的低代码工作流自动化平台,擅长于连接各种服务和中间件,严格来说它不是专为AI而生的工作流平台。
-
开源版即可满足基本需求,如需使用SSO登录、监控统计、并发执行等功能,可以考虑付费版本。
-
它同样功能强大、社区活跃、模版丰富、文档齐全、上手门槛较高,虽然也是低代码平台,但更适合IT从业人员。
安装:配属上,推荐4核+8G即可,但为了更好的扩展性,也可以参考下面官方推荐的配置,但我个人感觉前期没必要堆那么多核的CPU,反而内存应该稍微大一些。
具体安装,还是建议使用Docker方式进行安装,简单快捷。官方默认是没有中文版的,安装完是英文版,但是我们可以对其进行汉化。
官方原版:
汉化版:
汉化后,访问的地址是:http://localhost:15678 主要是端口变了,可以在docker-compose.yml文件中找到。
同样的,关于具体的使用这里不详细介绍了,后续会更新公众号详细介绍n8n的使用,建议大家持续关注。
-----
今天主要是对企业AI应用开源的三剑客Dify、RAGFlow、n8n进行了简单的介绍,让大家初步了解了这三款工具能够干什么,适不适合自己的企业。
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取