autodl 网盘下载transformers内置包很慢解决办法

本文提供了一个简单有效的方法来解决下载速度慢的问题。只需通过特定链接进入并点击清理功能,即可显著提升下载速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### AutoDL 环境配置与环境包下载教程 #### 创建 Anaconda 虚拟环境 为了确保深度学习框架能够正常运行,通常需要先创建一个新的虚拟环境。以下是基于 `conda` 的操作方式: 通过指定 Python 版本来创建新的虚拟环境: ```bash conda create -n pytorch python=3.9.18 [^1] ``` 激活刚刚创建的虚拟环境: ```bash conda activate pytorch ``` #### 安装 IPython Kernel 并注册至 Jupyter Notebook 为了让 Jupyter Notebook 使用新创建的虚拟环境作为内核,需执行以下命令(记得替换 `x9py38` 为你自己的环境名称): ```bash ipython kernel install --user --name=x9py38 [^2] ``` 此步骤会将当前环境中的 Python 解释器注册为 Jupyter 可选的内核。 #### 初始化 Conda 和设置环境变量 如果在重新启动 Shell 后发现无法自动加载 `base` 环境,则可能需要手动初始化 Conda 或者修改 `.bashrc` 文件以添加必要的路径支持: ```bash conda init bash source ~/.bashrc ``` 对于某些特殊情况,还需要向用户的 `.bashrc` 添加如下内容以便正确识别 Conda 环境变量: ```bash export PATH="/path/to/anaconda/bin:$PATH" ``` #### 获取并应用 GitHub 密钥 (可选) 当涉及代码同步或者依赖于远程仓库时,建议完成 SSH 配置以简化身份验证过程。具体做法是从服务器端导出公钥 (`rsb_pub`) 并将其加入个人 GitHub 帐号的安全设置里[^3]: ```bash cat ~/.ssh/id_rsa.pub ``` 复制显示出来的密钥字符串粘贴到目标平台相应位置即可实现免密码登录功能。 #### 下载所需软件包 一旦上述准备工作全部就绪之后就可以利用 pip 工具安装额外需求项了。例如要引入 PyTorch 库及其配套组件则可以按照官方文档推荐的方式进行调用: ```bash pip install torch torchvision torchaudio ``` 另外也可以借助 conda 来管理这些第三方库文件从而获得更好的兼容性和稳定性表现: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 以上就是关于如何使用 AutoDL 进行基础开发前准备工作的详细介绍以及相关技巧分享!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员奇奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值