43、58轮SHA - 1的代数密码分析

58轮SHA - 1的代数密码分析

1. 代数消息修改算法

代数消息修改算法是寻找58轮SHA - 1碰撞的重要工具。其具体步骤如下:
1. 随机选择((a_1, a_2, \ldots, a_{16}) \in (\mathbb{F} 2^{32})^{16})。
2. 令(a \leftarrow (a_1, a_2, \ldots, a
{16}))。
3. 求解代数方程组(CR(a)),其解对应控制位的赋值,这些赋值能验证所有受控多项式。
4. 求解代数方程组(SC(a)),其解对应半中性位和调整位的赋值,这些赋值能验证所有非受控多项式。
5. 根据前两个方程组的解更新(a)。
6. 返回(a)。

下面是该算法的mermaid流程图:

graph TD;
    A[随机选择\((a_1, a_2, \ldots, a_{16}) \in (\mathbb{F}_2^{32})^{16}\)] --> B[令\(a \leftarrow (a_1, a_2, \ldots, a_{16})\)];
    B --> C[求解\(CR(a)\)];
    C --> D[求解\(SC(a)\)];
    D --> E[根据解更新\(a\)];
    E --> F[返回\(a\)];
2. 消息修改与纠错码解码的关系

设(S)是(F = (\mathbb{F} 2^{32})^{16})中所有满足关于({a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值