无选择多项式时间计算与零一律
1. 多项式时间BGS程序与图的可分离性
- 多项式时间BGS程序 :具有布尔输出的BGS程序,同时对步数和活跃元素数量有多项式界限。
- 图类的可分离性 :两个图类 $K_0$ 和 $K_1$ 是 $\sim$CPTime - 可分离的,意味着存在一个多项式时间BGS程序 $\Pi$,对于 $K_0$ 中的所有输入结构,$\Pi$ 以输出 false 停止且不超过多项式界限;对于 $K_1$ 中的所有输入结构,$\Pi$ 以输出 true 停止且不超过多项式界限。当输入既不在 $K_0$ 也不在 $K_1$ 中时,$\Pi$ 的行为无关紧要。
2. 谢拉赫零一律
- 定理内容 :如果 $K_0$ 和 $K_1$ 是 $\sim$CPTime - 可分离的无向图类,那么 $K_0$ 和 $K_1$ 中至少有一个的渐近概率为零。
- 等价表述 :对于任何给定的多项式时间BGS程序,要么几乎所有图产生输出 true 或未决,要么几乎所有图产生输出 false 或未决。不过,更强的断言(即几乎所有图产生 true,或几乎所有产生 false,或几乎所有产生未决)是错误的。
3. 定理的加强
- 定理2内容 :给定一个具有布尔输出的BGS程序 $\Pi$ 和活跃元素数量的多项式界限,存在一个数 $m$、一个输出值 $v$ 和一个