
深度学习
余音丶未散
J2EE,机器学习,Hadoop,Spark,时间序列分析
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习之keras使用
深度学习之keras使用keras安装 安装Numpy、Scipy等科学计算库 安装theano、tensorflow eg:CPU版tensorflow pip install tensorflow pip install keras 修改Backend底层框架Theano或者Tensorflow使用import keras屏幕会显示当前使用的Backend~/.keras/keras.json{转载 2017-09-05 20:17:30 · 2280 阅读 · 0 评论 -
神经网络之python实现
神经网络之python实现 #初始化w b 输入为 [每层的size] eg: [4,5,2] 输入层为4 隐藏层为 5 输出层为 2 def initwb(sizes): num_layers_ = len(sizes) #层数 w_ = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] #1-最后二层 与 2-最后一层原创 2017-09-05 16:26:30 · 785 阅读 · 0 评论 -
Tensorflow学习笔记
Tensorflow学习笔记 参考 知乎 莫烦 Tensorflow 安装 # python 2+ 的用户: $ pip install tensorflow # python 3+ 的用户: $ pip3 install tensorflow 更新 # 如果你是 Python 2, 请复制下面 pip uninstall tensorflow # 如果你是 Pyth...转载 2017-09-05 20:19:34 · 3881 阅读 · 0 评论 -
深度学习之CNN实现
CNN 实现 CNN相比与传统神经网络,主要区别是引入了卷积层和池化层 卷积是使用tf.nn.conv2d, 池化使用tf.nn.max_pool CNN之keras实现 import numpy as np np.random.seed(2017) #为了复现 from __future__ import print_function from keras.datasets i转载 2017-09-11 20:45:23 · 989 阅读 · 0 评论 -
深度学习之LSTM实现
LSTM之keras实现 TensorFlow之LSTM LSTM之keras实现 import numpy as np np.random.seed(2017) #为了复现 from __future__ import print_function from keras.datasets import mnist from keras.utils import np_ut转载 2017-09-15 15:38:52 · 7548 阅读 · 3 评论 -
神经网络之keras/tf框架实现
Keras实现神经网络 import numpy as np np.random.seed(2017) #为了复现 from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Acti...转载 2017-09-11 15:08:04 · 900 阅读 · 0 评论 -
tflearn学习笔记01
tflearn学习笔记 常见函数解释 tflearn.fully_connected 全连接层 flatten 使传入的张量变平 池化层/降采样层:Pooling Layer 标准化层(Normalization Layer): Batch Normalization解决了反向传播过程中的梯度问题(梯度消失和爆炸) LRN(Local Response Normali...原创 2018-03-27 10:30:53 · 1023 阅读 · 0 评论