springboot基于协同过滤的就业推荐系统

3系统分析

3.1需求分析
要想在实际的情况下,开发出一套符合使用者要求的就业推荐系统统,首先要了解使用者的需求。对就业推荐管理的需求有深刻的了解,无论设计与开发工作多么优秀,都是一个成功的先决条件,也可以这么说,要不能满足用户需求的程序,是创造不出非常大的使用价值的,而且还给设计者带来很多的不利。需求分析是就业推荐系统统设计时期的比较重要的一个阶段,它的基本内容是准确地解释出系统将会能够做些什么事情的关键问题,最终完成的是一份完整的系统的使用说明。
(1)有一些功能方面的需求,通过需求分析,可以找出需要完成的几个基本功能模块。性能要求也是指在系统设计的时候,需要满足一定的要求和限制,比如响应时间、信息处理、内存容量、磁盘容量、安全等等。
(2)系统的可靠性要求也是一个必须考虑的问题,它可以将可用性和可靠性结合起来,显示了用户在使用时经常遇到的问题。硬件要求也包括需要处理错误,以表明系统如何应对环境错误。如果自己的系统收到来自其他系统的信息,这些信息违背了某些格式,这时系统应该会有什么样的响应情况。
(3)软件方面的需求还有一些逆向的需求,就是系统不能做的事情。可以说,有很多种不同的要求,而开发人员应该能够准确的理解他们的真正需要,并且可以应用到就业推荐系统统中。还有应该明确地找出一些虽然不属于当前就业推荐系统统开发的情况,但是据现在的分析,将来是非常可能会需要的可能需求。经过这个需求的分析,在设计过程中对就业推荐系统统将来有机会出现的问题有所准备,要能够确实需要的时候可以更加轻松的修改。
3.2系统性能分析
系统的性能是指操作系统完成现有的程序的有效性、稳定性以及响应速度,操作系统完成一个任务时,与系统自身设置、路由的设计、网络性能的测试、设备的使用情况等多个方面都密切相关,要是任何一个环节出现问题,就都会影响整个系统的性能。所以要从网络的设置、系统的操作、硬件的组合、程序的应用等方面综合检查,然后问题出现在哪个部分,可以集中进行解决。
在程序的应用、系统的操作、硬件的组合、网络的设置等方面,影响性能最大的是程序的应用和系统的操作两个方面,因为这两个方面如果出现的问题是不太容易察觉,隐蔽性非常的强。而硬件的组合、网络的设置只要出现问题,一般都能马上发现。主要了解一下系统的操作方面的性能操作思路,程序的应用方面需要具体问题还需要有具体的解决办法。
随着智能设备的快速发展,以及对于网络的深入认识,这种高度分布式架构最终会变为移动计算。但是,随着计算量的日益增大,系统架构师开始将计算任务转移到共享网络的计算上,这样,他们就可以利用共享网络的计算可以无限制的计算量和存储相关的资源,并享受其带来的比较高的可靠性以及低成本。因此,近年来,许多的企业开始向以共享网络计算为中心的更加有效化的方式发展。
3.3可行性分析
3.3.1经济可行性
系统采用的是java技术来实现相应的功能的开发,综合就是一个比较基础的系统开发设计,所以所用到的有开源的开发环境所构成。而且可以利用现有的设备,不用进行另外的硬件设备购买。
用户通过使用就业推荐系统统,很大程度减小了人员成本,极大提高了管理的效率。目前得由人员管理的方式存在很多不足,首先是人工成本大,并且工作效率比较低,然后是存在着很多现金流失的问题。在结合就业推荐系统统的特点,还有一些记录和统计,智能就业推荐管理杜绝了以上的问题,提高了就业推荐管理的安全性。
经济可行性是主要计算项目的开发成本,还有项目成功后可能带来的有效收益。很多的项目只有开发成本能控制在企业有可能接受的范围内的情况下,这样的项目才会被批准开发。然而本次系统的开发在上述所有的问题的情况下,是可以完成相关的系统设计。
3.3.2技术可行性
在研究技术可行性的时候,系统的开发环境是可以确定的,所以技术可行性最好与系统功能和性能以及一些实际的情况同时考虑。在可行性研究阶段,结合实际调整开发的内容和选择能够完成的技术体系是一个可用的手段,如果系统进入开发阶段,任何的调整都意味着会耗费更多的经历。需要再次明确的问题是,技术可行性不只是考虑在技术上是否可实现,实际上还包含了在当前的实际的情况下的技术可行性。有很多的因素例如时间不足、预期的开发目标技术难度比较难、不能有充足的技术积累、而且对于技术的掌握不够等这些实际存在的情况,都是要提前部署和认真规划的。
开发就业推荐系统统的技术内容分析,目前的状况是从网络硬件和相关技术上看是可行的。该系统采用了java和 MySQL技术。到现在可以知道,很多的基础知识都是经过学习使用的,在后续的设计中还需要不断的练习,学习更多相关的技术经验来充实自己对于系统的开发。
3.3.3社会可行性
在社会可行性分析中,首先能结合国家经济和社会发展的实际情况,还需要能够让用户更加的便利,给使用者带来多方面的高效益,使得可以比较快速的发展以及应用。
在可行性分析中,是比较清晰地发掘开发的系统带来的各种直接的有效的利益以及一些隐藏起来的好处,以便在后续的设计中更加的坚定和确信系统开发的意义。解决一些社会方面存在的问题,设计并开发系统肯定是要发现某类社会存在的问题,并且能够带来一定的社会价值。还有一些社会的影响力,是通过系统优势和切实的好处来产生的,能够在一定的情况下提高效率,肯定会增加一些社会的进步和发展。社会上的可行性,包括法律上的可行性,也包括法律上的可能性,法律上的可行性,需要社会上的许多因素,可以来实现系统建设的现实性。如果所开发的系统与国家法律或政策等相关的因素不相符合,在某些信息化的邻域中使用的是一些加密的信息或者技术问题,还有不经过正常的操作使用其他的一些公开的信息等这些情况,这样的系统的开发在法律的范围中就是不能被允许的。
其中还有一个比较重要的用户使用可行性也是通过执行系统时的可行性,是从所有情况下用户的角度来考虑系统的可行性,由于设计开发相关的系统就是站在社会中广大的用户体验考虑的,所以在这个层面考虑也是符合的。
3.4系统用例分析
在设计系统的过程中,用例图是系统设计过程中必不可少的模型,用例图可以更为细致的,结合系统中人员的有关分配,能够从细节上描绘出系统中有关功能所完成的具体事件,确切的反映出某个操作以及它们相互之间的内部联系。
其中参与者就是和系统能够发生交互的外在实体,一般可以指系统的某个用户。一个用例图就能对应出系统中的一个功能过程,系统中完整的功能都是由许多不同的用例图所组成的。
系统用例图如图3-1、图3-2、图3-3所示。

在这里插入图片描述

图3-3 企业用例图

4 系统设计

4.1系统功能结构设计图
本次系统所涉及到的有关的功能,都是用功能结构图来简洁和清晰的表示出来,功能结构图就是能够把比较复杂的功能结构用图的形式清晰的描绘下来,并且为后续的设计以及测试等模块提供了明确的方向,在构思功能结构图的时候,便可以给设计的过程带来一定的思维导向,不至于在设计过程中有所遗漏,可以尽可能的明确系统所涉及到的功能。
系统的功能结构图如图4-1所示。
在这里插入图片描述

图 4-1系统功能结构图
4.2数据库设计
4.2.1数据库设计原则
学习程序设计,如果要了解数据库管理系统或者是根据需求而制定的系统接口,就必须创建一种数据库管理系统的模式,用来保存数据资料,这样当在应用编程过程中时候,就不需要再向操作系统页面上加载信息,进而增加了整个系统的工作效率。信息库管理系统中保存着许多数据,应该说是一个管理信息系统建设的中心和基础,而信息库管理系统也为管理信息系统建设提出了新增、删除、更改和搜索的操作功能,使管理信息系统建设能够迅速地查询所需要的数据,而不会直接从程序代码中查找。信息库管理系统通过将信息表的各个组成部分按照特定的方法准确地合并,排序和组成信息库管理系统。
通过对就业推荐系统统的主要功能信息进行规划并分为若干功能实体信息,实体信息将使用E-R图加以表示,本系统的几个主要功能“用户、论坛交流、企业”实体图如图4-2所示。
在这里插入图片描述

图4-2局部E-R图

5系统详细设计

5.1系统功能实现
当人们打开系统的网址后,首先看到的就是首页界面。在这里,人们能够看到就业推荐系统统的导航条和首页推荐信息等。系统首页界面如图5-1所示:

在这里插入图片描述

图5-1 系统首页界面

系统注册:在注册流程中,用户在Vue前端填写必要信息(如用户名、密码等)并提交。前端将这些信息通过HTTP请求发送到Java后端。后端处理这些信息,检查用户名是否唯一,并将新用户数据存入MySQL数据库。完成后,后端向前端发送注册成功的确认,前端随后通知用户完成注册。这个过程实现了新用户的数据收集、验证和存储。系统注册页面如图5-2所示:
在这里插入图片描述
图5-2系统注册页面

文章底部可以获取博主的联系方式,获取源码、查看详细的视频演示,或者了解其他版本的信息。
所有项目都经过了严格的测试和完善。对于本系统,我们提供全方位的支持,包括修改时间和标题,以及完整的安装、部署、运行和调试服务,确保系统能在你的电脑上顺利运行。

### 基于协同过滤就业推荐系统的设计与实现 #### 1. 系统架构设计 为了构建一个高效的基于协同过滤就业推荐系统,可以采用分层架构来分离不同的功能模块。通常情况下,这种系统会分为以下几个层次: - **前端展示层** 负责与用户的交互,提供简洁直观的操作界面。可以选择现代的Web框架如Django[^4] 或 Spring Boot[^5] 来搭建用户友好的界面。 - **业务逻辑层** 处理核心的功能需求,例如计算相似度、生成推荐列表等。这一层可以通过Java或Python编程语言实现,并利用Spring Boot框架提升代码的可维护性和扩展性[^5]。 - **数据存储层** 存储用户行为数据以及职位信息。MySQL数据库因其良好的性能和易用性成为首选方案[^5]。此外,还可以考虑引入NoSQL数据库(如MongoDB)用于处理大规模非结构化数据。 - **算法模型层** 这一层专注于实现具体的协同过滤算法。可以根据实际场景选择用户-项目型(User-based)[^1] 或者项目-项目型(Item-based) 的方式来进行匹配运算[^2]。 #### 2. 数据收集与预处理 高质量的数据是成功实施任何机器学习解决方案的基础条件之一。对于本案例中的就业推荐平台而言,需要采集两类主要的信息资源——求职者的个人信息及其历史活动记录;还有雇主发布的岗位描述及相关属性标签等内容。 这些原始资料往往存在噪声干扰或者缺失值等问题,所以必须经过清洗整理才能投入使用。具体措施包括但不限于去除重复项、填补空白字段、标准化数值范围等等操作步骤[^3]。 #### 3. 协同过滤算法的选择与优化 在确定了基本的技术栈之后,接下来要做的就是挑选合适的CF变种并对其进行必要的调整以适应特定领域内的特殊要求。以下是两种常见的做法: - 用户基础法 (User-Based Collaborative Filtering): 寻找那些拥有相同喜恶模式的目标群体成员,再依据他们的偏好推测当前个体可能会感兴趣的选项. - 物品关联法则(Item-to-Item Association Rules ): 记录下哪些产品经常被一同选购的事实,进而预测某个顾客未来也可能倾向于购买其中某些类别下的商品. 无论采取哪种策略都需要考虑到时间复杂度等因素的影响,尤其是在面对海量级联关系网络时更是如此.[^2] 另外值得注意的一点在于单纯依赖传统的Pearson Correlation Coefficient 方法可能存在冷启动效应(cold start problem),即当新加入的对象缺乏足够的互动经历可供参照评估的时候就会显得力不从心.Henceforth ,some researchers proposed hybrid approaches combining content analysis with collaborative filtering techniques to alleviate such issues effectively . #### 4. 技术选型与工具链集成 最后一步则是选定恰当的语言环境和技术组件组合起来完成整个工程落地过程。这里列举几个常用的选择供参考: - 后端服务器端运行环境 : Python + Django / Java + SpringBoot ; - 编程脚本支持库包 : NumPy & Pandas for numerical computing and data manipulation; - 可视化图表渲染插件:Matplotlib or Seaborn libraries could be employed here depending upon personal preferences; - 部署容器镜像打包服务 Docker containerization technology ensures consistency across different deployment environments while Kubernetes orchestrates large scale deployments efficiently.[^4] ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity def calculate_user_similarity(ratings_matrix): """ Calculate the similarity between users using Cosine Similarity metric Parameters: ratings_matrix (numpy.ndarray): A matrix where rows represent users and columns correspond to items rated by them Returns: sim_matrix (numpy.ndarray): Matrix containing pairwise similarities among all pairs of users """ # Compute normalized rating vectors per user row-wise norm_ratings = normalize(ratings_matrix) # Apply cosine similarity function over these transformed representations sim_matrix = cosine_similarity(norm_ratings) return sim_matrix if __name__ == "__main__": sample_data = [[5,0,3], [4,2,0],[0,1,5]] result = calculate_user_similarity(np.array(sample_data)) print(result) ``` 以上展示了如何运用余弦距离衡量不同个人之间的相近程度的一个简单例子。当然实际情况当中还需要综合考量更多维度因素共同作用效果才会更加理想些。[^2] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值