随机森林(RandomForestClassifier) 参数

随机森林(RandomForestClassifier)是一种集成学习方法,通过结合多个决策树进行预测。n_estimators参数设置决策树的数量,通常至少为100以保证性能。bootstrap参数决定了是否使用放回抽样。oob_score用于评估未被选入训练集的数据,提供简便的交叉验证替代方案。n_jobs参数控制并行任务数量,可加速模型训练。warm_start则允许在现有模型基础上增加更多决策树。class_weight参数调整类别权重,确保不同类别的重要性得到适当考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机森林(RandomForestClassifier)

n_estimators=10决策树的个数,越多越好,但是性能就会越差,至少100左右(具体数字忘记从哪里来的了)可以达到可接受的性能和误差率。
bootstrap=True是否有放回的采样。
oob_score=Falseoob(out of band,带外)数据,即 在某次决策树训练中没有被bootstrap选中的数据。多单个模型的参数训练,我们知道可以用cross validation(cv)来进行,但是特别消耗时间,而且对于随机森林这种情况也没有大的必要,所以就用这个数据对决策树模型进行验证,算是一个简单的交叉验证。性能消耗小,但是效果不错。
n_jobs=1并行job个数。这个在ensemble算法中非常重要,尤其是bagging(而非boosting,因为boosting的每次迭代之间有影响,所以很难进行并行化),因为可以并行从而提高性能。n=1不并行;n= n n个并行;n= -1 CPU有多少core,就启动多少job
warm_start=False热启动,决定是否使用上次调用该类的结果然后增加新的。
class_weight=None各个label的权重。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值