
AI python
极客阿宝
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
remove练习题
数组a 的元素,在b中出现的都剔除# 方法一a=['a','b','c','d']b=['c','d','e','f']for i in b: if i in a: a.remove(i)print(a)#方法二:a=['a','b','c','d']b=['c','d','e','f']for i in a: if i in b: break print(i)...原创 2022-01-28 17:28:55 · 460 阅读 · 0 评论 -
np.argsort()函数
1. 先定义一个array数据import numpy as npx=np.array([1,4,3,-1,6,9])2. argsort() 输出将数据从小到大排序,再取该数据在原始位置的索引np.argsort(x)array([3, 0, 2, 1, 4, 5], dtype=int64)3. argsort( )[ ] 输出将数据从小到大排序,取位置为-1的排序数据,该排序数据所对应的原始位置的原始索引 np.argsort(x)[-1]5 np.argsort(x原创 2022-01-26 16:39:54 · 1378 阅读 · 0 评论 -
推荐算法-用户推荐(UserCF)和物品推荐(ItemCF)对比
一、定义UserCF:推荐那些和他有共同兴趣爱好的用户喜欢的物品ItemCF:推荐那些和他之前喜欢的物品类似的物品根据用户推荐重点是反应和用户兴趣相似的小群体的热点,根据物品推荐着重与用户过去的历史兴趣,即:UserCF是某个群体内的物品热门程度ItemCF是反应本人的兴趣爱好,更加个性化二、新闻类网站采用UserCF的原因用户大都喜欢热门新闻,特别细粒度的个性化可忽略不计个性化新闻推荐更强调热点,热门程度和实效性是推荐的重点,个性化重要性则可降低ItemCF需要维护一张物品相关度的表,原创 2022-01-25 14:24:41 · 2522 阅读 · 0 评论 -
python基础 - Numpy
1 基本操作1.1数组创建import numpy as np # Shift + Enter# 创建可以将Python,中list列表转换成NumPy数组l = [1,2,3,4,5]# NumPy数组nd1 = np.array(l) # 输入一部分arr + tab(命令中自动补全,按键) 代码提示,自动补全print(nd1)display(nd1) # 显示[1 2 3 4 5]array([1, 2, 3, 4, 5])nd2 = np.zeros(shape原创 2022-01-18 11:05:38 · 1480 阅读 · 0 评论 -
AI 人工智能 干货分享
参加AI 人工智能训练营也有两个月了,是时候与大家分享人工智能的干货今晚8:00~11:00会在B站与大家分享的学习笔记和干货。欢迎大家前往观看,一定不让你们失望。【B站链接】添加链接描述【名称】极客阿宝...原创 2021-07-20 21:03:12 · 321 阅读 · 0 评论 -
随机森林(RandomForestClassifier) 参数
随机森林(RandomForestClassifier)n_estimators=10决策树的个数,越多越好,但是性能就会越差,至少100左右(具体数字忘记从哪里来的了)可以达到可接受的性能和误差率。bootstrap=True是否有放回的采样。oob_score=Falseoob(out of band,带外)数据,即 在某次决策树训练中没有被bootstrap选中的数据。多单个模型的参数训练,我们知道可以用cross validation(cv)来进行,但是特别消原创 2021-07-20 17:10:19 · 6698 阅读 · 0 评论