MICCAI是由国际医学图像计算和计算机辅助干预协会(Medical Image Computing and Computer Assisted Intervention Society) 举办,
跨医学影像计算(MIC)和计算机辅助介入 (CAI) 两个领域的综合性学术会议,是该领域的顶级会议
FCN的优点:
1.是可以接受任意大小的输入图像,而不用要求所有的训练图像和测试图像具有同样的尺寸。
2.更加高效,因为避免了由于使用像素块而带来的重复存储和计算卷积的问题
U-Net是FCN的变体
我们演示了u-net在三个不同细分任务中的应用。
下面是对图片的解释
用于任意大图像的无缝分割(此处为EM堆栈中的神经元结构的分割)的重叠拼贴策略。对黄色区域中的分割的预测需要蓝色区域内的图像数据作为输入。丢失的输入数据通过镜像推断
第一个数据集在这里我们获得了平均值 IOU(联合上的“相交”)为92%,明显好于83%的次优算法
第二个数据集我们实现了77.5%的平均IOU,明显好于46%的次优算法