RefineDet论文阅读

在这里插入图片描述

题目:用于目标检测的单发细化神经网络

在这里插入图片描述
在这里插入图片描述

对于物体检测,两阶段方法(例如,更快的R-CNN)已经实现了最高的准确性,
而一阶段方法(例如,SSD)具有高效的优点。为了继承两者的优点并克服它们的缺点。

在这里插入图片描述

RefineDet的主要思想:一方面引入two stage类型的object detection算法中对box的由粗到细的回归思想。
另一方面引入类似FPN网络的特征融合操作用于检测网络,可以有效提高对小目标的检测效果,检测网络的框架还是SSD。
由粗到细回归:其实就是先通过RPN网络得到粗粒度的box信息,然后再通过常规的回归支路进行进一步回归从而得到更加精确的框信息,
这也是two stage类型的object detection算法效果优于one stage
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值