题目:用于目标检测的单发细化神经网络
对于物体检测,两阶段方法(例如,更快的R-CNN)已经实现了最高的准确性,
而一阶段方法(例如,SSD)具有高效的优点。为了继承两者的优点并克服它们的缺点。
RefineDet的主要思想:一方面引入two stage类型的object detection算法中对box的由粗到细的回归思想。
另一方面引入类似FPN网络的特征融合操作用于检测网络,可以有效提高对小目标的检测效果,检测网络的框架还是SSD。
由粗到细回归:其实就是先通过RPN网络得到粗粒度的box信息,然后再通过常规的回归支路进行进一步回归从而得到更加精确的框信息,
这也是two stage类型的object detection算法效果优于one stage