自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 编译原理——实验5. 中间代码生成

摘要: 本实验通过Lex/Yacc工具链实现表达式到三地址码的转换,掌握语法制导翻译方法。Lex进行词法分析,Yacc处理文法规则并嵌入语义动作,动态生成临时变量(如t1=c-d)传递运算结果。实验验证了运算符优先级(*/高于+-,括号优先)和临时变量顺序的正确性,成功将表达式a+b*(c-d)+e/(c+d)转换为线性三地址码。讨论指出当前方案未优化临时变量复用,未来可引入AST优化。实验巩固了编译原理知识,提升了Lex/Yacc工程应用能力,为开发DSL奠定基础。 (150字)

2025-07-01 16:45:37 731

原创 编译原理——实验4. 表达式中使用变量

本文介绍了一个使用Flex和Bison工具实现的简易整数表达式计算程序。实验内容包括:设计支持变量的表达式正规式和文法,开发符号表管理模块(var_list.h/c),编写Lex和Yacc程序(lex.l/parse.y)实现表达式解析和计算。程序支持加减乘除、括号、赋值运算,变量默认初始化为0。测试案例验证了基本运算、变量赋值、优先级处理及错误检测等功能。实验结果表明,该程序能正确处理各种表达式,包括首次使用变量、连续赋值等场景。通过实践加深了对编译器前端工作原理的理解,掌握了符号表管理和运算符优先级处理

2025-07-01 16:38:54 784

原创 快来看deepseek分析25年测试工程师职业(向好版)

2025年测试工程师职业生态呈现“技术纵深定薪资、AI能力决天花板”的鲜明特征。行业并未萎缩而是向高价值环节迁移,基础功能测试岗减少的同时,AI测试、混沌工程等新兴岗位持续扩张。技术护城河优先投入Python自动化脚本云原生测试(如K8s+容器化)、AI工具链(Testim/Mabl)三大技术栈,获得40%薪资溢价。领域专业化切入金融安全测试车联网协议测试医疗数据合规等高增长赛道,利用行业知识构建不可替代性。协作能见度。

2025-07-01 16:25:40 999

原创 MySQL 常用命令大全

MySQL常用命令速查摘要 本文整理MySQL数据库常用操作命令,涵盖数据库管理、表操作、数据增删改查(CRUD)、索引管理、用户权限、备份恢复等核心功能。主要内容包括: 数据库创建/删除/切换 表结构操作与数据CRUD 索引创建与删除 用户权限管理(创建/授权/撤销) 数据备份恢复(mysqldump) 实用命令如查看连接、终止查询等 每条命令均标注标准语法格式,重点操作(如UPDATE/DELETE)特别标注安全警告。适用于快速查阅MySQL操作语法。(149字)

2025-07-01 16:20:21 229

原创 编译原理——实验3. 计算整数表达式

编写相应的Lex和Yacc程序,计算整数表达式的值,整数表达式中可能含有 + - * / ( ) 和整数值。下列是一些整数表达式示例:2 + 32+3-42-3+42-(2+4)2*3+4*53+44/5设计整数表达式的正规式词法设计整数表达式的文法用Flex和Bison生成整数表达式的计算程序,并编译运行。

2025-06-27 16:46:52 238

原创 数字图像处理综合分析题设计

某医院CT影像存在低对比度和噪声干扰问题,导致肺部小结节难以观察。需设计预处理方案提升图像质量并分割出疑似病灶区域。增强图像对比度,抑制噪声;准确定位直径≥3mm的结节区域;输出二值化分割结果。包含至少3种图像处理技术组合;说明每步操作的关键参数(如滤波器尺寸、阈值选取方法等);分析可能遇到的干扰及解决方案。

2025-05-28 11:34:44 887

原创 数字图像处理期末考试题

摘要: 本次数字图像处理期末考试涵盖简答、计算、实验分析与综合设计四类题型。简答题考查基础概念(如图像增强、形态学运算、压缩算法);计算题涉及直方图均衡化与腐蚀操作的具体实现;实验题对比不同边缘检测与分割算法的性能差异;综合题要求设计车牌识别预处理流程,包括增强、去噪、定位与分割。答案详细解析了各题要点,如Canny算子的边缘连续性优势、区域生长法的局部适应性,以及车牌识别中形态学核参数选择(如5×1结构元素连接水平边缘)。通过理论与计算结合,全面考察学生对图像处理核心技术的掌握。

2025-05-28 11:32:05 1175

原创 实验八 基于Python的数字图像问题处理

本次实验内容为:综合应用-区域生长算法提取感兴趣区域通过手动设置初始种子点,利用区域生长算法得到脑部区域,这在医学领域可以辅助医生进行医疗诊断。案例描述:区域生长算法常用于提取图像中的感兴趣目标区域,为后续图像分析做准备。本案例采用区域生长算法提取医学图像中的人的脑部区域。案例数据:数据为1张人脑图片brain.jpg。 案例步骤参考:(1)导入包;(2)读入图片srclmg(单通道灰度图);(3)构造一个跟原图等大小的零值标记矩阵a;(4)手动选取初始种子和生长阈值;(5)运行区域

2025-05-17 22:42:47 243

原创 实验七 基于Python的数字图像水印算法

2. 读取一幅灰度图像,水印图像为qlu32.bmp,分别实现空域和频域两种算法对图像进行水印嵌入和提取;显示水印嵌入前后的图像,并显示水印嵌入前后的图像psnr值,以及水印提取的nc值。3. 对2中嵌入水印后的图像添加噪声,并进行水印提取,显示添加噪声后的图像和提取的水印图像。由此,分析2中实现的算法的优缺点。

2025-05-17 22:34:59 815

原创 实验六 基于Python的数字图像压缩算法

1. 学习图像压缩章节内容。2. 读取灰度图像cameraman.jpg和barbara.jpg,从以下方法中选择两种实现对图像的压缩,并显示压缩比和压缩前后对比图像,试分析所选算法的优缺点。A.哈夫曼编码; B. 算术编码; C. 行程编码;D. 小波图像编码。

2025-05-07 22:49:29 1319

原创 实验5 基于Python的数字图像形态学操作和图像分割

读取一幅二值图像并显示,分别使用3*3大小的十字型、圆形和矩形结构元素,分别进行膨胀、腐蚀、开运算、闭运算,并显示形态学操作后的图像。分析不同类型结构元素对图像形态学操作的特点。2. 读取一幅灰度图像并显示,使用5*5大小的矩形结构元素,分别进行膨胀、腐蚀、开运算、闭运算,并显示形态学操作后的图像。分析不同类型结构元素对图像形态学操作的特点。3. 读取一幅灰度图像并进行显示,对canny算子实现对图像的分割算法,并通过调整sobel算子核的大小(3*3,5*5),对比canny算子进行图像分割的效果。

2025-05-07 11:07:24 816

原创 给美女美颜——基于Python的数字图像增强处理

在空域增强方面,运用Sobel算子验证了一阶微分对边缘特征的强化效果,理解了梯度计算如何提升图像锐度与细节表现;通过直方图均衡化实践,直观体会到像素灰度重分布对医学图像对比度的改善机制,尤其在处理低对比X光片时,均衡化使骨骼纹理显著清晰。在频域处理中,傅里叶变换与低通滤波的实现让我认识到频域分离对图像平滑与噪声抑制的作用,频谱图对比揭示了高低频分量与图像特征的关联性。频域滤波中截止频率的选择直接影响细节保留程度;通过Sobel算子计算梯度幅值,与原图加权融合,突出边缘信息,增强图像轮廓,改善细节表现。

2025-04-29 17:48:31 877

原创 用python实现词频分析与可视化

目标:通过统计文本中各个词汇的出现频率,找出文本中的关键词,帮助我们了解文本的核心内容。步骤:统计词频:计算每个词汇在文本中的出现次数。常用方法有TF(词频)和TF-IDF(词频-逆文档频率)。TF:词汇在文档中的出现频率。TF-IDF:不仅统计词频,还会考虑词汇在其他文档中的出现情况,减少常见词汇的影响。可视化:使用词云图或柱状图可视化高频词,帮助直观展示文本中的关键词。词云图:显示频率较高的词汇,词语大小与频率成正比。

2025-04-25 16:35:08 999

原创 实验2. 使用Lex实现词法分析

某语言下列词法定义如下:digit → 0|1|2|3|4|5|6|7|8|9letter → A|B|C|D|…|X|Y|Z|a|b|…|y|z|_integer → digit digit*identify → letter ( letter | digit )*operator → +|-||/|%|==|!=|>|<|>=|<=|&&||||!reserved → void|int|while|if|else|return|break|continuesymbol → (|)|,|;|

2025-04-23 19:38:31 1031

原创 编译原理实验1. 使用C语言实现词法分析

使用C语言编程,实现给定语言的词法分析的功能。 某语言下列词法定义如下: digit → 0|1|2|3|4|5|6|7|8|9 letter → A|B|C|D|...|X|Y|Z|a|b|...|y|z|_ delim → <空格> | \t | \n integer → digit digit* variable → letter ( letter | digit )* operator → +|-|*|/|(|) 编写C语言,识别出这个语言组成的串中所有符号(integer、vari

2025-04-23 19:23:15 963

原创 实验三 基于Python的数字图像增强处理

1. 读取图像文件couple.jpg,对其线性拉伸算法的实现并显示增强后图像(线性拉伸变换函数自行拟定)2. 读取图像文件couple.jpg,对其指数拉伸算法的实现并显示增强后图像(指数拉伸变换函数自行拟定,只对灰度值在[20-50]范围内的灰度值进行拉伸)。3. 读取图像文件couple.jpg,对其直方图均衡化算法的实现,显示增强后的图像以及前后直方图对比。4. 读取图像文件couple.jpg,实现对其添加高斯噪声、椒盐噪声、泊松噪声、speckle噪声等,并显示添加噪声前后对比图像。5.

2025-04-18 17:09:16 956

原创 实验二 数字图像的变换处理

1. 实现图像文件peppers.jpg的读取,获取并显示图像的平移后图像(分别包括:x轴平移60像素,y轴平移60像素,左上角平移(20,50)像素,右下角平移(20,50)像素)2. 实现图像文件peppers.jpg的读取,获取并显示图像的几何变换后的图像(包括水平镜像、垂直镜像、缩小为原来的1/4、放大为原来4倍、转置、剪切[50:120,100:240])。3. 实现图像文件peppers.jpg的读取,分别对其进行二维傅里叶变换(DFT),并显示DFT后的图像。请从系数分布、幅值情况、对应图

2025-04-18 16:53:59 788

原创 实验1 数字图像处理Python基础

一、实验目的 编程环境配置:在Python编程环境下,安装常见图像处理库(OpenCV) 了解图像不同的文件存储格式; 理解并掌握数字图像的基本操作; 熟练掌握查看图像信息,图像灰度化的方法; 熟练掌握帧差法的使用二、实验内容1. 编程环境配置:在Python编程环境下,安装图像处理库(OpenCV)模块。2. 在计算机的图画软件中创建一幅图像,分别存储为BMP、GIF、JPEG和TIFF格式的图像文件,并显示其大小。3. 实现对内容2中图像文件的读取,获取并显示图像的尺寸信息

2025-03-30 17:01:35 820

原创 计算机组成原理实验五 节拍发生器

通过节拍发生器实验,我深入了解了CPU时序系统工作原理、层次化方法以及节拍发生器的原理与构成。在实验操作上,从原理图输入、管脚定义到编译、适配和下载等步骤,让我熟悉了一整套实验流程。在功能测试阶段,看到指示灯根据时钟脉冲依次循环点亮,改变脉冲频率能调整LED闪烁频率。

2024-11-26 16:25:08 945

原创 操作系统实验 4 文件系统设计

一、 实验目的通过一个简单文件系统的设计,加深理解文件系统的内部功能及内部实现。二、 主要仪器设备、试剂或材料 VMare虚拟机三、 实验内容为 Linux 系统设计一个简单的二级文件系统。要求做到以下几点:(1)可以实现下列几条命令。mkdir 创建目录rmdir 删除目录cd 进入目录ls 显示目录、文件create 创建文件rm 删除文件open 打开文件close 关闭文件write 写文件read 读文件(2)列目录时要列出文件名、文件类型、拥有者、创建时间

2024-11-25 22:10:49 2588

原创 计算机组成原理实验四 四位补码运算器

一、 实验目的和要求掌握补码运算器的结构及工作原理;掌握补码加法器的工作原理。掌握层次化设计方法。二、 实验内容设计一个能实现补码加法、减法、加 1、左移、右移和直接传送功能的四位补码运算器。三、 主要仪器设备操作系统为 WINDOWS XP 的计算机一台;数字逻辑与计算机组成原理实验系统一台;4D 寄存器 74173、异或门 7486、两输入与门 7408、三输入或门 74hc32。四、 实验方法与步骤原理图输入:调用寄存器、移位器、补码加法器等元件根据图 3.4 完成四位补码运算

2024-11-24 12:54:50 1371

原创 人工智能导论实验六 BP网络、卷积神经网络实验(使用BP网络、卷积神经网络CNN实现对MNIST数据集的分类问题。)

在本次实验中,我们使用了BP神经网络(反向传播网络)和卷积神经网络(CNN)分别对MNIST手写数字数据集进行了分类任务。BP网络在浅层结构下分类效果一般,容易出现过拟合,需要较长训练时间才能达到较好效果。而CNN在处理图像数据方面具有明显优势,通过卷积层提取局部特征、池化层缩小特征尺寸,模型学习到更多图像的空间信息,提高了分类准确度。实验结果显示,CNN在MNIST分类任务中明显优于BP网络,体现了卷积网络在图像识别中的高效性和优越性。

2024-11-22 17:16:14 1017

原创 人工智能导论实验五—— 蚁群算法 (用蚁群算法求解不用规模(如10个城市,20个城市,100个城市)的TSP问题)

总体来说,蚁群算法为求解TSP提供了一种生物启发式的解决方案,通过不断迭代实现路径的优化。算法性能分析可以通过对不同规模的问题(例如10、20、100个城市)进行实验,记录每个规模下的收敛速度和最优路径长度。一般来说,问题规模增大时,收敛速度会减慢,且需要更多的蚂蚁数量和迭代次数才能找到接近最优的解。熟悉和掌握蚁群算法的原理、流程和信息素更新策略,理解求解TSP问题的流程并测试主要参数对结果的影响,掌握蚁群算法的基本实现方法。用蚁群算法求解不同规模(如10个城市,20个城市,100个城市)的TSP问题。

2024-11-22 16:58:41 845

原创 人工智能导论实验一 ——旅行商问题

旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题。A*算法是一种启发式搜索算法,它使用启发式函数来估计从当前节点到目标节点的最短路径。在TSP问题中,我使用欧几里得距离作为启发式函数。旅行商问题让大家认识到了启发式算法如A*算法在解决路径优化问题时的高效性,它通过启发式评估来减少搜索空间,提高求解速度。请用启发式算法,如A*切法求解.使用Python编程完成,每个城市都访问一遍。给定如下10个城市的坐标,求解访问每个城市一次后回到起始城市的最短路径。

2024-11-22 16:34:13 604

原创 神经网络实验6 手写字识别(matlab)

​一、 实验目的和要求利用cnn神经网络实现手写字识别二、 实验环境MWORKS三、 实验内容利用cnn神经网络实现手写字识别四、 实验步骤1. 数据预处理mnist_uint8.mat 包含了 MNIST 数据集的全部数据,其中:train_x: 60000*784 矩阵,60000 个训练样本,每个训练样本像素值展开成了行向量。train_y: 60000*10 矩阵,60000 个训练样本标签,每个样本标签中对应分类元素值为 1,其余为 0;test_x: 10000*78

2024-11-21 20:37:29 502

原创 实验三 存储管理

本实验表明,LRU在动态页面管理中具备较高的实用价值,而FIFO等简单算法虽然易于实现,但在高性能需求场景中并不适用。本实验的目的是通过请求页式管理中页面置换算法模拟设计,了 解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。在实验中,命中率随着内存容量增加而逐步提高,从 4 页时的 48.44% 增加到 32 页时的 90%。命中率随内存容量增加而稳定提升,从 4 页时的 31.25% 增加到 32 页时的 90%。③ 在前地址[0,m+1]中随机选取一条指令并执行,该指令的地 址为 m’;

2024-11-21 10:46:29 1902

目标: 通过统计文本中各个词汇的出现频率,找出文本中的关键词,帮助我们了解文本的核心内容 方案: 统计词频:计算每个词汇在文本中的出现次数 常用方法有TF(词频)和TF-IDF(词频-逆文档频率)

https://blog.csdn.net/qianqianaao/article/details/147515496?fromshare=blogdetail&sharetype=blogdetail&sharerId=147515496&sharerefer=PC&sharesource=qianqianaao&sharefrom=from_link python小项目

2025-04-25

操作系统实验 4 文件系统设计 filesys.cpp对应本文test.cpp

cpp

2024-11-25

神经网络实验6 手写字识别(matlab)

MNIST数据集

2024-11-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除