参考文章
原帖子
参照大佬的,我进行了pytorch深度学习框架配置,因为是跨专业的,一方面是小白探索,进行记录讨论,另一方面对同样机型的小伙伴提供一些思路。
一、安装cuda
1、先查看自己电脑机型和配置
我目前了解到的有了两种方法:
法一:直接通过Nvidia面板查看
法二:通过cmd命令行查看
nvidia-smi
直接在cmd命令行中,或者anaconda prompt中运行都可以,得到以下结果:
我的电脑CUDA版本是12.8,所以我认为只要小于这个版本的CUDA都可以。
2、关于是否要自己预先安装CUDA和cuDDN
我查询并作了如下记录:
只使用 PyTorch: 如果您只打算使用 PyTorch,并且不涉及其他需要独立 CUDA支持的软件,直接安装带有CUDA 支持的 PyTorch 版本即可,无需关心系统是否安装了 NVIDIA 的 CUDA Toolkit。
需要开发 CUDA 程序或使用其他软件: 如果您还需要开发 CUDA 应用或使用其他依赖 CUDA 的程序,安装NVIDIA 的 CUDA Toolkit 和 cuDNN 是必要的。
通俗理解:Pytorch自带CUDA和cuDNN,可以不用先费劲去装,这种适用于只使用pytorch深度学习框架的情况。而自己去NVIDIA官网下载的CUDA和cuDNN,是全局的,并且即使二者都下载了也并不会冲突。
下面是对于CUDA和cuDNN的解释:
贴一个NVIDIA的官网和安装教程:
CUDA与cuDNN安装教程
补充下,我自己是提前装了的,但是应该没有影响。
我在官网下载了12.5版本,以及对应的cuDNN。
二、安装pytorch
先去官网选择对应版本与型号,我的如下:
链接:pytorch官网
然后复制下面这段命令在已经建好的conda环境中使用:
这个命令就是你下载pytorch页面选择完配置后,自动出现的,所以我没有再贴一遍代码。
等待一会儿安装完成,我记得比较大。
三、检验是否安装成功。
在对应conda环境命令行中,使用如下命令。
python
import torch
print(torch.__version__)
print(torch.cuda.is_available())
提醒:这里不知道为啥,我导入torch时加载有些久,大概有几十秒。
但是最后还是可以加载成功的。