- 博客(212)
- 收藏
- 关注

原创 利用docker技术基于paddle镜像的二次开发
说到docker想必大家一定不陌生,docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何Linux 机器上,也可以实现虚拟化。docker就像船搬运货物时,需要先拆了再装上。假如能把一切的东西都放到一个集装箱里,就只用搬运箱子不用搬运货物,大幅度的省时省力。关于dokcer有什么优势了?(以下只是一部分)1.高效利用系统资源d...
2019-06-11 13:33:28
1404

原创 spark mllib库 进行电影聚类分析(Scala语言)
实验镜像:下载链接:https://pan.baidu.com/s/15Fc1L3iJEcbXo7SVW9mTfg提取密码:iaom用户名:c205,密码:一个空格root密码:一个空格Spark 机器学习库简介Spark 机器学习库提供了常用机器学习算法的实现,包括聚类,分类,回归,协同过滤,维度缩减等。使用 Spark 机器学习库来做机器学习工作,可以说是非常的简单,通...
2019-06-11 13:24:39
2834
原创 LLamaFactory 微调Qwen-VL-3B时报错TypeError: argument of type ‘NoneType‘ is not iterable
摘要:在微调Qwen-VL-3B模型时出现TypeError错误,原因是modeling_utils模块的ALL_PARALLEL_STYLES属性缺失或为None。
2025-07-09 16:52:41
52
原创 使用LLaMA-Factory微调Qwen2.5-VL-3B 的目标检测任务-使用LLaMA-Factory webui进行训练
本文介绍了使用LLaMA-Factory WebUI进行模型微调的具体操作流程。首先在根目录运行webui.py启动服务,通过浏览器访问交互界面。主要步骤包括:选择Qwen2.5-VL-3B基础模型、设置SFT微调模式、上传自定义数据集(如Qwen25_vl.json)、调整训练参数(输出目录、batch size等)。训练过程中可实时查看日志和Loss曲线,完成后在指定目录获取微调后的模型权重。该WebUI提供了可视化的模型微调操作界面,简化了训练流程。
2025-07-09 14:41:07
371
2
原创 使用LLaMA-Factory微调Qwen2.5-VL-3B 的目标检测任务-LLaMA-Factory训练数据配置
摘要:本文介绍了将自定义数据集导入LLaMA-Factory的步骤:首先将JSON数据文件(如sharegpt_qwen25vl.json)复制到指定目录,然后在dataset_info.json中添加数据集配置,包括文件路径、格式类型(sharegpt)以及消息和图像对应的字段映射。该过程为模型训练提供了数据准备支持。
2025-07-09 14:33:41
230
原创 使用LLaMA-Factory微调Qwen2.5-VL-3B 的目标检测任务-数据集格式转换(voc 转 ShareGPT)
本文介绍了将VOC格式标注数据转换为ShareGPT格式的方法。ShareGPT格式采用多轮对话的JSON结构,包含用户指令和AI回复字段。文中提供了一个完整的Python脚本,能够递归遍历VOC数据目录,自动配对XML标注文件和图片,并将目标检测信息(类别和边界框)转换为ShareGPT要求的格式。脚本最终输出包含图像路径和标注信息的JSON文件,适用于LLaMA-Factory和Qwen2.5-VL等模型的训练。该方案支持嵌套文件夹结构,能够处理常见的图像格式,并保持相对路径的一致性。
2025-07-09 14:24:56
346
原创 使用OpenVINO2025量化部署QWen2.5-VL多模态大模型
Qwen2.5VL模型增强了图像识别、物体定位、文档解析和视频理解能力。使用前需安装torch、transformers等依赖库,可从modelscope或huggingface下载模型。通过optimum-cli可将模型转换为INT4格式以优化性能。示例代码展示了如何加载模型,处理输入图像并执行推理,但运行时间较长。该模型支持中文,适用于多模态任务。
2025-06-13 09:29:26
58
原创 ImportError: libgthread-2.0.so.0: cannot open shared object file: No such file or directory
解放方式:
2024-12-16 13:40:26
174
原创 工业相机视场角计算
如果物距为1米,可以计算实际视场范围(Field of View Range, FOVR)现在常用的是海康威视品牌的相机,打开官网查找现在相机型号,在详细信息里面找到。,可以通过计算得出视场角(FOV, Field of View)。通过计算得到传感器尺寸。
2024-11-22 09:26:46
1393
原创 AttributeError: module ‘PIL.Image‘ has no attribute ‘ANTIALIAS‘
训练模型时遇到AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS',原因为高版本的。使用vim打开报错的文件,输入 :set nu,显示行号信息,然后输入报错的位置行号 443,直接跳转到报错行的位置,修改如下所示。使用Image.LANZOS方法替换Image.ANTIALIAS。pillow库中的ANTIALIAS方法已经删除了。还有一种方式降低PILLow的版本;使用pip 或者conda 安装。然后再次运行,OK。
2024-09-24 11:43:58
3544
原创 C++使用Sanp7 实现西门子s7通信
使用Snap7库可以实现与西门子S7系列PLC的通信。以下是一个基本的C++示例,演示如何使用Snap7库来连接西门子S7 PLC并读取和写入数据。
2024-06-06 10:13:46
1810
原创 使用opencv在图像上画带刻度线的对角线,以图像中心点为0点
使用OpenCV在图像上绘制带刻度线的对角线,可以通过以下步骤实现。我们将首先找到图像的中心点,然后绘制对角线线,并在这些线的适当位置绘制刻度线。
2024-06-06 09:50:35
523
原创 使用opencv在图像上画带刻度线的十字线,以图像中心点为0点
使用OpenCV在图像上绘制带刻度线的十字线,可以通过以下步骤实现。我们将首先找到图像的中心点,然后绘制水平和垂直线,并在这些线的适当位置绘制刻度线。
2024-06-06 09:44:50
998
原创 使用C++版本的opencv dnn 部署onnx模型
使用OpenCV的DNN模块在C++中部署ONNX模型涉及几个步骤,包括加载模型、预处理输入数据、进行推理以及处理输出。构建了yolo类,方便调用
2024-06-06 09:14:59
1364
11
原创 ubuntu18 编译ROS代码 报“cxx_attribute_deprecated”is not know to CXX compiler
1:先检查一下 编写的CMakeList.txt的文件中,所包含、链接的文件和库是否都存在且引用正确(仔细的查看了一下,都是正确的)2:查看一下cmake的版本,可能是cnake版本过低造成的(升级cmake版本后,居然成功了)查看安装后的cmake版本(显示3.25.2)安装最新版本的cmake(使用ppa安装)然后使用apt 安装cmake。(显示的为3.10.2)居然奇迹的编译过了~然后在编译ROS代码。
2023-08-24 14:38:46
523
原创 ubuntu 下载地址(国内镜像源比较快)
官方下载地址中科大源南京大学上海交通大学清华大学阿里云开源镜像站浙江大学不知名镜像网站各个版本下载网址:
2023-08-17 14:45:36
4066
原创 图像多目标跟踪
目标跟踪所要做的是根据传感器量测序列确定真实目标的数量以及每个目标的对应状态(位置、速度、航向等)多目标跟踪常用的两个算法为:卡尔曼滤波和匈牙利匹配两个算法匈牙利匹配算法用于匹配前后帧目标,因为目标检测器的不稳定(垃圾)往往容易丢失目标或目标框的位置偏移,影像匈牙利匹配的结果。卡尔曼滤波可以基于t时刻的历史状态信息(目标框的位置x,y,w,h)预计t+1时刻的状态信息,出现丢失目标的时候,比匹配丢失前一帧目标位置,目标的运动轨迹要平滑的多,也不会存在匹配不到目标的情况。
2023-08-11 16:59:15
532
原创 目标识别模型两种部署形态图
在日常工业、车载等需求环境下,需要在嵌入式移动端的软件系统中调用该模型文件进行推断测试,软件系统追求性能经常使用C/C++进行编码实现,而目标检测模型训练经常使用python的pytorch、TensorFlow框架,我们需要在嵌入式软件系统中使用该模型,需要用C /C++编写一条模型部署工具链。三、下面介绍两种部署形式:①在纯CPU下面调用该模型(可以在自己win、Linux电脑上玩一下),②在nvidia NX/TX2 下面部署该模型(需要提前买一块)。
2023-08-09 14:59:30
295
原创 强化学习QLearning 进行迷宫游戏和代码
(temporal-difference learning, TD learning):指从采样得到的不完整的状态序列学习,该方法通过合理的 bootstrapping,先估计某状态在该状态序列(episode)完整后可能得到的 return,并在此基础上利用累进更新平均值的方法得到该状态的价值,再通过不断的采样来持续更新这个价值。(1)环境的状态s,状态是对环境的描述,正如机器人在迷宫中的位置,也就是t时刻环境的状态st,体现为环境状态集中的某一个状态,在智能体做出动作后,状态会发生变化;
2023-07-31 11:02:31
929
原创 用flask部署yolov3服务并进行识别
上图说明flask server 端已经正常运行了,下面进行测试端的代码编写。flask 服务器端代码flask_server.py。
2023-05-18 14:38:44
497
原创 对darknet框架训练出的模型进行加密,并使用opencv dnn调用加密模型demo-python
为了防止深度学习出来的模型被其他人随便使用部署,研究了一下使用darknet 训练出来的yolov4模型进行加密,然后在线解密后,使用opencv的dnn模块读取模型进行在线推断,为有相关工作的开发者提供一个思路。
2023-04-20 11:44:41
469
原创 Ubuntu18.04安装ROS Melodic
下面开始安装ROS,推荐安装桌面完整版,这样就可以将ROS、rqt、rviz、机器人通用库、2D/3D仿真器、导航、2D/3D感知等功能一次性安装完成。至于如何通过ROS源代码学习ROS的更多实现细节,可以在Ubuntu 18.04 LTS下通过安装oepngrok进行浏览,笔者打算在下一篇文章中介绍。开始使用ROS之前,还需要安装rosdep,rosdep是ROS一些核心组件的运行基础,会在编译ROS源码时检查和安装程序包依赖。加快ROS的安装速度,使用提国内的安装源,添加国内的安装源示例代码如下。
2023-04-20 11:09:07
361
原创 ubuntu 操作系统常用的软件清单
(C、python、C++、中文)ubuntu(操作系统)Xmind(思维导图)Shutter(截屏)18.04STL以上。10.X和9.2版本。MELD(对比软件)
2023-04-20 09:02:24
538
原创 COCO数据集格式介绍
接着我们来看images这一项,这是个列表,列表中的每个元素是如下格式的对象,它指的其实就是一张图片的信息,包括图片的license、文件名、链接地址、宽高、捕获日期、网络链接、图片id这些信息,其中filename、height、width和id是必须的,所以在构建自己的数据集时保证有这四项就行了。首先,和VOC不同的是,COCO整个训练集的标注都在一个文件内,json文件可以理解为键值对的格式,所以这边看最外层可以发现,整个标注其实由下面5个部分组成,每个部分又是新的键值对。是分割级别标注,根据。
2023-04-20 08:57:55
3336
1
原创 VOC数据格式介绍
所以,如果要制作xml标注的自定义VOC格式的数据集,只需要构建三个文件夹,分别是JPEGImages用于存放所有原始图像、Annotations存放所有的和原始图像名称一一对应的xml标注文件和ImageSets/Main,其中存放train.txt、val.txt和test.txt等用来进行数据集划分,这些txt文件可以手动划分好,也可以使用代码随机划分,需要注意的是txt文件内容一行为一个不加拓展名的文件名即可。目录下放的是所有的图片,这里只是叫这个名字,可以是非JPG格式的图片,而。
2023-04-20 08:53:52
4084
Windows C++版本的opencv4.8+opencv-contrib,使用vs2019编译
2024-06-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人