MATLAB使用系统辨识工具箱建立PID水温的传递函数系数

概述

利用PID控制水温,由于实际在工程项目中,手动调节PID参数比较耗费时间,所以可以先利用MATLAB中的Simulink软件建立模型,先在仿真软件上调节大概的PID参数,再利用此PID参数为基础在实际的工程项目中手动调节PID参数,以此缩短调节PID参数的时间。由于Simulink中传递函数(Transfer Fcn)为被控对象,传递函数中相关的系数需要根据实际的控制模型进行填写,控制模型的系数可以利用MATLAB中的系统辨识工具箱(System Identification)识别。

实现步骤

(1).以PID控制水温为例子,在实际的工程项目中,以PWM的占空比为输入,输出为温度的值,以百分之百的占空比加热水温,将水温从当前温度(例如:30度)加热到100度,记录加热期间每秒钟对应的PWM占空比的值,以及每秒钟对应的水温值,这里为了便于计算以恒定的占空比百分之百加热,记录的数值存储到SD卡中,若没有SD卡可用串口讲记录的数据发送到上位机中,这里以SD卡为例,将每秒钟记录的水温存储到txt格式的文本中。
在这里插入图片描述
(2).打开MATLAB软件,导入数据,将导入的数据转换为列向量,并修改导入数据的变量名为PID_Output。
在这里插入图片描述
在这里插入图片描述
(3).创建一个脚本文件,并定义一个变量名为PID_Input的列向量,由于以恒定的占空比百分之百加热,所以值定

为全面评估传统PID与粒子群优化PID(PSO-PID)的控制性能,本章基于第3章的Simulink仿真模型,设计多组对比实验,量化分析超调量(σ%)、调节时间(t_s)、稳态误差(e_ss)三项核心指标。实验分为以下两类: 1.阶跃响应测试:设定目标温度r(t)=90℃,初始温度25℃,无外部干扰,评估系统动态响应特性; 2.抗干扰能力测试:在t=150s施加10%加热功率下降(模拟水量突变),t=220s施加5℃脉冲扰动(模拟蒸汽喷射),验证鲁棒性。 实验组包括: (1)对照组1:Z-N法整定PID(K_p=0.72, K_i=0.015, K_d=8.64); (2)对照组2:试凑法整定PID(K_p=1.2, K_i=0.015, K_d=5.0); (3)实验组3:PSO优化PID(K_p=1.85, K_i=0.023, K_d=7.42)。 4.1.2 阶跃响应性能对比分析 1. 超调量(σ%) 超调量反映系统阻尼特性与稳定性,是衡量咖啡机温度控制品质的关键指标。如图4-1所示: (1)Z-N法PID:σ%=18.5%,因参数整定偏向临界稳定,导致水温过冲显著,易引发咖啡过萃; (2)试凑法PID:σ%=6.7%,通过手动平衡比例与微分作用,超调量较Z-N法降低63.8%; (3)PSO-PID:σ%=3.2%,智能算法通过全局优化抑制超调,较试凑法进一步降低52.2%,满足σ%≤5%的设计要求。 2.调节时间(t_s) 调节时间定义为系统进入并保持在±1℃误差带所需时间,直接影响用户体验。实验数据表明: (1)Z-N法PID:t_s=70s,因积分作用较弱,稳态收敛速度慢; (2)试凑法PID:t_s=58s,通过增强积分项缩短调节时间17.1%; (3)PSO-PID:t_s=42s,多目标优化协同提升响应速度,较试凑法减少27.6%。 稳态误差(e_ss) 稳态误差反映系统控制精度,实验结果显示: (1)Z-N法PID:e_ss=0.8℃,积分系数K_i不足导致残余偏差; (2)试凑法PID:e_ss=0.4℃,通过调整K_i改善积分累积效果; (3)PSO-PID:e_ss=0.2℃,优化后的K_i完全消除静差,稳态波动范围±0.2℃。 {width="6.0in" height="3.0in"} 图4-1 不同PID算法的阶跃响应曲线对比 根据我提供的数据直接帮我绘制阶跃响应曲线对比图的Matlab代码
04-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值