米勒-拉宾素性检测算法

米勒-拉宾素性检测就是目前应用比较广的一种随机化素性检测算法。 

它是基于下面两个定理:

  • (费马小定理)如果 p 为素数,且 a 无法被 p 整除,则对于所有大于0小于 p 的整数 a,有
    ap11modp
  • 如果1在模n下有非平凡平方根,即存在x ≠ ±1 满足
    x21modn
    则n必为合数。

上面两个定理的具体证明就不给出了。
在素性检测中,实际上我们利用的是费马小定理的逆命题,也就是满足该等式的整数都是素数。费马小定理的逆命题是伪命题,但它在大多数情况下是成立的。当a = 2时,前十亿个正整数中能满足该等式的合数只有5597个(这些数被称为伪素数)。
所以如果我们可以通过验证等式an11(modn)是否成立去检验一个数是否为素数。对于10亿以内的正整数,这样做出错的概率只有0.011%. 而通过多次改变a的值来进行检验,还可以进一步降低出错的概率。
当然,这个方法还是有不少漏网之鱼的。为了提高准确率,我们就需要用到上面的第二条定理了。
我们先将 p-1 表示为 u*2^t 的形式。那么,a^(p-1) mod n 就可以表示为:(au)2tmodn
首先,我们计算x0=aumodn,然后使用反复平方法计算
x1x20modn
x2x21modn

xix2i1modn

xtx2t1modn

很显然,xi1xi在模n下的平方根,那么,根据定理2,在这一计算过程中,如果有任意一个xi1modnxi1±1modn,则n必为合数。

下面是C++代码实现(根据《算法导论》中的伪代码编写):

bool witness(int a, int n)
{
	unsigned int x = n - 1, t = 0;

	for(unsigned int i = 1; i <<= 1, t++) //计算t的值
		if((x | i) == x)
			break;
		
	unsigned int x0 = mod_exp(a, x >> t, n); //u = x >> t,x0 = a^u mod n
	for(int i = 0; i < t; i++)
	{
		x = x0 * x0 % n;
		if(x == 1 && x0 != 1 && x0 != n - 1) //x0是1的非平凡平方根,则n必为合数
			return true;

		x0 = x;
	}
	if(x != 1)  //不符合费马小定理,n必为合数
		return true;

	return false;
}

bool is_prime(int n, int s) //s为检测的次数,s越大准确度越高,但也越耗时间
{
	srand(time_t(time(NULL)));
	for(int i = 0; i < s; i++)
	{
		int a = rand() % (n - 2) + 2;//实际上随机生成的a是不允许重复的,这样写只是为了简便

		if(witness(a, n))  //如果n为合数,直接返回检测结果
			return false;
	}
	return true;
}


### 米勒-拉宾素性测试概述 米勒-拉宾素性测试是一种概率性的算法,用于高效地判断一个给定的大整数是否为素数。此算法不仅具有较高的准确性,在实际应用中也表现出良好的性能。 #### 算法原理 该算法的核心在于利用费马小定理以及二次探测定理来进行验证工作。对于待测奇合数 \( n \),如果存在某个基数 \( a (1<a<n) \),使得下列条件之一成立,则可断言 \( n \) 不是质数: - 费马小定理不满足:\(a^{n-1} \not\equiv 1 (\mod{n})\); - 存在一个最小的偶数 \( d |(n−1)\),即 \(d=2^s·r\) ,其中 \( r \) 是奇数,并且有 \(a^d\not≡±1(\bmod {n})\) 和 对于所有的 \(0≤j<s, a ^{2^jr}\not ≡ −1(\bmod {n})\) 成立[^2]。 #### Python 实现示例 下面是一个简单的 Python 版本实现,展示了如何编写这样一个函数来执行米勒-拉宾素性测试: ```python import random def miller_rabin(n, k=40): if n == 2 or n == 3: return True if n <= 1 or n % 2 == 0: return False # Write n as d*2^r + 1 with d odd (by factoring out powers of 2 from n - 1) r, s = 0, n - 1 while s % 2 == 0: r += 1 s //= 2 for _ in range(k): a = random.randrange(2, n - 1) x = pow(a, s, n) if x == 1 or x == n - 1: continue for _ in range(r - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True ``` 这段代码定义了一个名为 `miller_rabin` 的函数,接受两个参数:要检测的数字 `n` 及迭代次数 `k` 。通过调整 `k` 的大小可以在精度和效率之间取得平衡[^3]。 #### 应用场景 在密码学领域内,特别是公钥加密体制下,生成安全的大素数至关重要。因此,米勒-拉宾素性测试广泛应用于如下方面: - **RSA 密码系统的密钥生成** :为了创建一对有效的 RSA 公私钥对,需要找到两个足够大的随机素数作为因子。 - **Diffie-Hellman 密钥交换协议中的参数选取** :同样涉及到寻找合适的安全素数以确保通信双方能够建立共享秘密键值[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值