基于YOLOv8的数字电子秤自动读数系统
项目概述
这是一个利用YOLOv8目标检测模型实现的光学字符识别(OCR)系统,专门用于检测和识别数字显示屏上的数字。该系统能够自动读取电子秤等数字设备上显示的数字值。
项目结构详解
数字OCR项目/
├── predict.py # 预测脚本:对输入图像进行数字识别
├── train_model.py # 模型训练脚本
├── yolov8n.pt # 训练好的YOLOv8模型文件
├── dataset/ # 数据集目录
│ ├── data.yaml # 数据集配置文件
│ ├── Scale Digital Numbers.v1i.yolov8.zip # 来自Roboflow的原始数据集
│ └── README.* # 数据集元信息
├── t1.jpg到t12.jpg # 测试图像样本
├── test_image.jpg # 额外测试图像
核心技术要素
-
模型架构:
- 采用YOLOv8 Nano版(yolov8n.pt),这是YOLOv8系列中最轻量级的版本
- 在保证识别精度的同时优化了实时性能
- 专门训练用于识别0-9的数字显示屏数字
-
数据集特点:
- 数据来源于Roboflow平台的"Scale Digital Numbers"数据集
- 包含10个数字类别(0-9)的标注图像
- 使用YOLO格式的data.yaml文件进行配置
-
类别处理机制:
- 原始数据集使用混合命名格式(‘Zero digit’, 'digit 2’等)
- 系统内部将这些类别重新映射为标准数字(0-9)
- 确保输出结果统一规范
使用流程
-
环境安装:
pip install ultralytics
-
模型训练:
python train_model.py
-
数字识别:
python predict.py --source 测试图片.jpg
实际应用场景
本系统特别适用于以下领域:
- 电子秤、数字仪表的自动读数
- 工业自动化中的数字显示采集
- 需要自动记录数字读数的物联网应用
- 实验室数据采集自动化
- 智能仓储的重量自动记录
优化拓展方向
-
功能增强:
- 实现多位数数字的连续识别与组合
- 添加单位识别功能(kg、g、lb等)
- 开发小数点识别能力
-
性能提升:
- 增加置信度阈值过滤,提高识别可靠性
- 优化模型轻量化,适应边缘设备部署
-
部署方案:
- 封装为Docker容器便于部署
- 开发RESTful API接口,方便系统集成
- 支持视频流实时处理
-
用户体验:
- 开发图形化操作界面
- 添加结果校验和人工修正功能
- 实现历史记录存储和导出
该项目为基于YOLOv8的数字显示OCR提供了一个可靠的基础框架,可根据具体应用场景进行定制化开发,在工业自动化、智能检测等领域具有广泛的应用前景。