基于Python编写的朴素贝叶斯在Mnist数据集上实现手写数字识别

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

一项目简介

  
一、项目背景与意义

手写数字识别是计算机视觉领域的一个经典问题,旨在将手写数字图像转化为可编辑的数字形式。MNIST数据集是一个广泛使用的手写数字图像数据集,包含了大量的手写数字样本,常被用于评估各种图像识别算法的性能。朴素贝叶斯分类器是一种基于贝叶斯定理和特征条件独立假设的分类方法,虽然在手写数字识别等复杂问题上可能不如深度学习方法效果好,但其简单性和可解释性使得它仍然具有一定的研究价值。

二、数据集介绍

MNIST数据集是一个包含70,000个手写数字图像的数据集,其中60,000个样本用于训练,10,000个样本用于测试。每个样本都是一个28x28像素的灰度图像,表示一个0-9之间的手写数字。

三、技术实现

数据预处理:
读取MNIST数据集,将图像数据转换为适合朴素贝叶斯分类器处理的格式。
由于朴素贝叶斯分类器通常处理离散特征,因此需要将像素值从0-255的连续值转换为离散值(如二值化)。
将图像数据展平为一维特征向量,以便朴素贝叶斯分类器进行处理。
特征提取:
由于MNIST数据集的图像是28x28像素的灰度图像,因此可以直接将像素值作为特征。
在某些情况下,也可以考虑使用更复杂的特征提取方法,如PCA(主成分分析)或LDA(线性判别分析),但考虑到朴素贝叶斯分类器的简单性,这里直接使用像素值作为特征。
朴素贝叶斯分类器训练:
使用Python的机器学习库(如scikit-learn)中的朴素贝叶斯分类器实现。
将预处理后的训练数据输入到朴素贝叶斯分类器中进行训练,得到模型参数。
预测与评估:
使用训练好的朴素贝叶斯分类器对测试集进行预测。
计算预测结果的准确率、精确率、召回率等指标,以评估分类器的性能。
四、项目特点与难点

项目特点:
使用了广泛使用的MNIS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值