原文链接:原文链接
在AI时代,有效管理个人知识,并利用大模型(如deepseek)帮助自己学习,或者为自己打工,将成为个人关键的核心竞争力之一。
今天,将要给大家介绍如何通过 DeepSeek+Dify 本地部署,实现个人知识库,以及生成式AI应用的方法。
在进入部署之前,先来回答大家心中可能存在的一个疑问——前面不才刚介绍了采用 AnythingLLM + DeepSeek进行本地AI知识库的部署吗?
一)为什么选用 Dify?
Dify 是一款开源的大语言模型(LLM)应用开发平台,融合了后端即服务(BaaS)和 LLMOps 的理念,能助力开发者快速搭建生产级的生成式 AI 应用。
简单说下吸引我的优势:(还有很多强大的功能,如工作流/API)
功能更强大:除了知识库,还可以搭建生成式应用;
选择更多样:支持上百种大模型,包括 OpenAI,Ollama,Deepseek等的调用,方便集成;可以调用其他线上满血版的大模型,效果自然也更好。
检索增强(RAG)效果更好;相比直接使用网页版,知识库的数据隐私也得到一定的平衡; (仅部分知识上传服务器)
二)详细部署步骤
1. 搭建准备
1.1 硬件要求:
- 显卡:NVIDIA RTX 3060 及以上,RTX 40 系列更佳
- 内存:至少 16GB,32GB 及以上更好
- 处理器:Intel Core i7 或 AMD Ryzen 7 系列及以上
- 硬盘:50GB 及以上,优先 SSD
1.2 相关软件:
- docker (必备)
如何本地部署DeepSeek大模型,可查看详情 [Deepseek服务器繁忙?本地部署帮你忙]
2. Dify安装步骤
2.1 安装Dify软件
打开命令终端,克隆软件
git clone https://github.com/langgenius/dify.git
1
可以看到软件下载和安装中:
PS:这里我遇到的状况是没有成功下载,本地找不到 dify 这个文件夹;按如下方式,重新下载。
2.2 进入docker文件目录
cd dify //切换到dify文件夹``cd docker //切换到docker目录下
1
启动docker,此时需保证系统已经安装了docker,并且已经正常运行。
一开始失败的,各种原因排查了将近3个小时后,终于看到了成功的曙光。
成功的提示:所有docker相关资源都成功启动。
3. 打开本地页面进行账号注册和登录
至此,Dify的安装就完成了。如搭建过程遇到问题,欢迎留言探讨。
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:原文链接