[leetcode] 221. Maximal Square 解题报告

本文介绍了一道典型的动态规划题目,旨在找到给定二维矩阵中包含所有1的最大正方形面积。通过构建辅助数组dp来记录正方形边长,实现高效的O(m*n)时间复杂度和O(m*n)空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://leetcode.com/problems/maximal-square/

Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.


思路:一道比较明显的动态规划题目。因为是要寻找一个正方形,所以就比较简单一些,借助一个辅助数组dp[][],dp[i][j]表示当前正方形的边长,并且其值由两种情况构成:

1. 如果matrix[i-1][j-1] = 1, 因为是正方形,则其值为min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j])中的最小值加1,小正方形构成大正方形,状态转移方程即为:

dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1;

2. 如果matrix[i-1][j-1] = 0,则dp[i][j] = 0;

时间复杂度为O(m*n),空间复杂度为O(m*n)

代码如下:

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        if(matrix.size()==0) return 0;
        int row = matrix.size(), col = matrix[0].size(), ans = 0;
        vector<vector<int>> dp(row+1, vector<int>(col+1, 0));
        for(int i = 1; i <= row; i++)
        {
            for(int j = 1; j <= col; j++)
            {
                if(matrix[i-1][j-1]=='0') continue;
                dp[i][j] = min(dp[i-1][j], min(dp[i][j-1], dp[i-1][j-1])) + 1;
                ans = max(ans, dp[i][j]);
            }
        }
        return ans*ans;
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值