【卡尔曼滤波理论推导与实践】【理论】【4/5 公式总结】

来看一下推导的思维流程:

  1. 卡尔曼滤波核心思想是推导的源头,也是推导的终点:
    zk估⃗=zk模⃗+Gk∗(H−1∗yk测⃗−zk模⃗)\begin{aligned}\vec{z_{k估}}&=\vec{z_{k模}}+\mathrm{G_k}*(\mathrm{H}^{-1}*\vec{y_{k测}}-\vec{z_{k模}})\end{aligned}zk=zk+Gk(H1ykzk)
  2. zk模⃗=A∗zk−1估⃗+B∗Fk−1\vec{z_{k模}}=\mathrm{A}*\vec{z_{k-1估}}+\mathrm{B}*F_{k-1}zk=Azk1+BFk1来自状态转移方程,yk测⃗\vec{y_{k测}}yk是测量得到的。
  3. 推导出Gk=Pk模Pk模+(H−1)2R\mathrm{G_k}=\frac{\mathrm{P_{k模}}}{\mathrm{P_{k模}}+(\mathrm{H}^{-1})^2\mathrm{R}}Gk=Pk+(H1)2RPk
  4. 推导出Pk模=APk−1估AT+Q\mathrm{P_{k模}}=\mathrm{A}\mathrm{P_{k-1估}}\mathrm{A}^T+\mathrm{Q}Pk=APk1AT+Q
  5. 推导出Pk−1估=(I−Gk−1)Pk−1模\mathrm{P_{k-1估}}=(\mathrm{I}-\mathrm{G_{k-1}})\mathrm{P_{k-1模}}Pk1=(IGk1)Pk1

观察上述5个公式,可以发现是一个迭代计算的过程,按照顺序一个个看下来,可以发现等式右侧全是已知数。把与模型相关的公式放在前面,迭代计算过程为:

  1. zk模⃗=A∗zk−1估⃗+B∗Fk−1\vec{z_{k模}}=\mathrm{A}*\vec{z_{k-1估}}+\mathrm{B}*F_{k-1}zk=Azk1+BFk1
  2. Pk模=APk−1估AT+Q\mathrm{P_{k模}}=\mathrm{A}\mathrm{P_{k-1估}}\mathrm{A}^T+\mathrm{Q}Pk=APk1AT+Q
  3. Gk=Pk模Pk模+(H−1)2R\mathrm{G_k}=\frac{\mathrm{P_{k模}}}{\mathrm{P_{k模}}+(\mathrm{H}^{-1})^2\mathrm{R}}Gk=Pk+(H1)2RPk
  4. zk估⃗=zk模⃗+Gk∗(H−1∗yk测⃗−zk模⃗)\vec{z_{k估}}=\vec{z_{k模}}+\mathrm{G_k}*(\mathrm{H}^{-1}*\vec{y_{k测}}-\vec{z_{k模}})zk=zk+Gk(H1ykzk)
  5. Pk估=(I−Gk)Pk模\mathrm{P_{k估}}=(\mathrm{I}-\mathrm{G_k})\mathrm{P_{k模}}Pk=(IGk)Pk

卡尔曼的推导过程中将卡尔曼增益做了一个变换Gk=KkH\mathrm{G_k}=\mathrm{K_k}\mathrm{H}Gk=KkHKk\mathrm{K_k}Kk是一个对角矩阵。结果是一样的,注意对角矩阵H\mathrm{H}H左乘、右乘、转置是一样的,Kk\mathrm{K_k}Kk形式的5个公式是:

  1. zk模⃗=A∗zk−1估⃗+B∗Fk−1\vec{z_{k模}}=\mathrm{A}*\vec{z_{k-1估}}+\mathrm{B}*F_{k-1}zk=Azk1+BFk1
  2. Pk模=APk−1估AT+Q\mathrm{P_{k模}}=\mathrm{A}\mathrm{P_{k-1估}}\mathrm{A}^T+\mathrm{Q}Pk=APk1AT+Q
  3. Kk=Pk模HTHPk模HT+R\mathrm{K_k}=\frac{\mathrm{P_{k模}}\mathrm{H}^T}{\mathrm{H}\mathrm{P_{k模}}\mathrm{H}^T+\mathrm{R}}Kk=HPkHT+RPkHT
  4. zk估⃗=zk模⃗+Kk∗(yk测⃗−H∗zk模⃗)\vec{z_{k估}}=\vec{z_{k模}}+\mathrm{K_k}*(\vec{y_{k测}}-\mathrm{H}*\vec{z_{k模}})zk=zk+Kk(ykHzk)
  5. Pk估=(I−KkH)Pk模\mathrm{P_{k估}}=(\mathrm{I}-\mathrm{K_k}\mathrm{H})\mathrm{P_{k模}}Pk=(IKkH)Pk

A\mathrm{A}A是状态转移矩阵,是人为建模给定的。
B\mathrm{B}B是控制矩阵,是人为建模给定的。
Q,R\mathrm{Q},\mathrm{R}Q,R分别是正态分布模型噪声和测量噪声的协方差矩阵,是人为假设的,这也是需要调参的点。
zk估⃗\vec{z_{k估}}zk是最优估计值,是卡尔曼滤波的最终输出值。
z0估⃗,P0估\vec{z_{0估}},\mathrm{P_{0估}}z0,P0是人为设定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朴人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值