《AI大模型开发笔记》NLP基础——3、RNN模型

本文详细介绍了循环神经网络(RNN)的基础知识,包括RNN的结构、作用和分类,并探讨了传统RNN、LSTM和GRU模型的内部结构和计算过程。RNN因其对序列数据的处理能力,在NLP任务如文本分类、情感分析等中有广泛应用。LSTM和GRU通过门控机制缓解了RNN的梯度消失问题,提高了处理长序列的能力。文章还简要提及了注意力机制在RNN中的应用及其作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、RNN架构解析

1、认识RNN模型

1.1、什么是RNN模型

RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.

一般单层神经网络结构:

RNN单层网络结构:

以时间步对RNN进行展开后的单层网络结构:

RNN的循环机制使模型隐层上一时间步产生的结果, 能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响.

 1.2、RNN模型的作用

因为RNN结构能够很好利用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Richard_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值