开源模型应用落地-chatglm3-6b-集成langchain(十)

本文介绍了LangChain框架如何利用ChatGLM3-6B模型优化对话系统,通过简化步骤和提供更智能的响应,增强用户体验。文章详细讲解了模型的特性和如何在实际环境中加载和使用ChatGLM3进行对话和复杂任务处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

    langchain框架调用本地模型,使得用户可以直接提出问题或发送指令,而无需担心具体的步骤或流程。通过LangChain和chatglm3-6b模型的整合,可以更好地处理对话,提供更智能、更准确的响应,从而提高对话系统的性能和用户体验。


二、术语

2.1. ChatGLM3

    是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:

  1. 更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。
  2. 更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
  3. 更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K。以上所有权重对学术研究完全开放 ,在填写 问卷 进行登记后亦允许免费商业使用

2.2.LangChain

    是一个全方位的、基于大语言模型这种预测能力的应用开发工具。LangChain的预构建链功能,就像乐高积木一样,无论你是新手还是经验丰富的开发者,都可以选择适合自己的部分快速构建项目。对于希望进行更深入工作的开发者,LangChain 提供的模块化组件则允许你根据自己的需求定制和创建应用中的功能链条。

    LangChain本质上就是对各种大模型提供的API的套壳,是为了方便我们使用这些 API,搭建起来的一些框架、模块和接口。

    LangChain的主要特性:
        1.可以连接多种数据源,比如网页链接、本地PDF文件、向量数据库等
        2.允许语言模型与其环境交互
        3.封装了Model I/O(输入/输出)、Retrieval(检索器)、Memory(记忆)、Agents(决策和调度)等核心组件
        4.可以使用链的方式组装这些组件,以便最好地完成特定用例。
        5.围绕以上设计原则,LangChain解决了现在开发人工智能应用的一些切实痛点。


三、前提条件 

3.1. 基础环境及前置条件

  1.  操作系统:centos7
  2.  Tesla V100-SXM2-32GB  CUDA Version: 12.2

3.2. 下载chatglm3-6b模型

从huggingface下载:https://huggingface.co/THUDM/chatglm3-6b/tree/main

从魔搭下载:魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/filesicon-default.png?t=N7T8http

评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值